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EXECUTIVE SUMMARY 

Nuclear energy plays an important role in the U.S. energy mix that will likely need to be maintained or 
strengthened to achieve significant greenhouse gas reduction. However, maintaining the nuclear portfolio 
becomes increasingly challenging in the current U.S. energy market since the low price of natural gas and 
the penetration of subsidized and low-marginal cost variable renewable electricity (VRE) are affecting the 
profitability of nuclear units. In this context, building new nuclear power plants will require increased 
competitiveness with reduced capital and O&M costs and increased revenues enabled by changes in market 
policies or increased flexible operation. Within the U.S. Department of Energy, Office of Nuclear Energy, 
the System Analysis and Integration Campaign has been acquiring the capability to model energy market 
economics in order to assist decision makers and nuclear utilities. The methods developed and codes 
acquired are displayed in Figure 1. The objective of this report is to describe the tools acquired for market 
analysis, and to illustrate their capabilities and complementarities with an example of analysis. 

 
Figure 1. Methods developed and codes acquired for electricity market analysis.   

The GCAM and MARKAL models solve the capacity expansion problem, simulating the energy markets 
in different U.S. and world regions over more than 100 years. These energy systems models calculate the 
least cost set of technologies over time that satisfy the specified demands within the bounds of the user-
defined constraints (technological, political, etc.). While these codes provide a scenario-based long-term 
perspective, they rely on simplified assumptions (based on 1 to 5-year time steps) to account for the daily 
variations in electricity prices and unit generation, those need to be verified using smaller time-frames 
market analysis code systems. 

The EDGAR (Economic Dispatch Genetic AlgoRithms) code is being developed under the SA&I 
Campaign to solve the combined Unit Commitment and Economic Dispatch problems to find the optimal 
schedule of a fleet of generating units to meet the forecasted grid demand over the next day in deregulated 
markets with an hourly time resolution. It allows modeling a specific competitive grid market and to assess 
the impact of policies and technologies on the revenue of an individual unit. Alternatively, it can be used 
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to demonstrate the feasibility of technology deployment scenarios proposed by capacity expansion codes. 
EDGAR is being developed within the Campaign since it has the unique capability of accurately modeling 
nuclear units by accounting for nonlinear dynamics to model xenon poisoning, length of hot and cold start-
up sequences, etc. The capabilities of EDGAR were significantly expanded in FY 2018 & 2019, by 
improving its code structure and computation performance, adding physics modeling for xenon reactivity 
effect in nuclear reactors, optimizing the renewable curtailment, and enabling deterministic assessment of 
the reserve requirement. 

EDGAR relies on sets of load demand, wind and solar generation data with a one-hour time-step. Those 
can be generated out of historic data using the VARMA (Vector Auto-Regressive Moving Average) model 
in RAVEN (Risk Analysis Virtual ENvironment), to provide a statistical understanding of the expected 
range of performance of a market system. The VARMA algorithm generates year-long hourly-resolution 
synthetic data histories. Further, RAVEN can collapse the synthetic histories to reduced-size truncated 
histories that are statistically representative of the full year modelled, while maintaining the correlations 
within different sets of data. It provides some unique capabilities that were developed within the Campaign 
to perform statistical sampling on both capacity expansion and unit-commitment/economic dispatch 
analyses to determine the best configuration for any likely weather scenario. To deliver this, segment 
clustering was implemented in the VARMA algorithm in FY 2019, together with two variance handling 
methods (segmentation and distribution preservation) conceived to better capture the distribution values 
from the training data. 

This full suite of market economic analysis codes was used to model the New York ISO region in order to 
demonstrate the capabilities acquired and build expertise within the Campaign in daily market analysis. 
This exercise was especially useful to help better understand what are the specificities of the different 
market modeling codes acquired and developed, what are the assumptions these codes rely on, and where 
are the remaining gaps in our tools those need to be addressed. NY-ISO was selected because it is a mostly 
deregulated market with significant fraction of nuclear and wind generations foreseen in 2050. Long-term 
scenarios from capacity expansion codes can be used to drive simulations with daily market analysis codes 
following a few preliminary steps. First, consistent grid plant data and cost data must be gathered. Second, 
historic load demand and renewable generation data with fine time resolution should be obtained and 
processed through VARMA to condensate the full year statistical information into a few representative 
days. Daily market analyses are then performed with EDGAR to schedule a representative fleet of units (40 
modeled for NY-ISO) on the reference time-point (2015) to demonstrate convergence of the results 
obtained, and their sensitivity to different sets of synthetic data generated with VARMA. Finally, similar 
analysis can be performed on the long-term (2050) scenario produced by GCAM to assess the feasibility of 
the deployment scenario provided. This procedure allows confirming the installed capacity is sufficient to 
meet the demand, that reserve requirements are met at every time of the year, and that the VRE generation 
would not lead to excess generation if their curtailment is allowed. The curtailment rate can then be provided 
back to the capacity expansion code in order to improve its model.  

Consequently, the daily market analysis codes acquired by the SA&I Campaign enable analyses that are 
complimentary to the global and regional energy market studies performed with GCAM and MARKAL. In 
particular, some of these codes are developed within the campaign as they provide unique capabilities for 
accurately modeling nuclear units and accounting for uncertainties in load and renewable generation data. 
Current applications discussed in this report are limited to testing and developing analysis experience while 
additional work is underway to improve accuracy, performance, and to keep extending the type of analyses 
enabled with daily market modeling codes. Future effort will also focus on applying this approach to 
additional U.S. regions. 
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SYSTEM ANALYSIS AND INTEGRATION CAMPAIGN  
DAILY MARKET ANALYSIS CAPABILITY AND 

RESULTS 
1. INTRODUCTION 
Nuclear energy plays an important role in the U.S. energy mix that will likely need to be maintained or 
strengthened to achieve significant greenhouse gas reduction. However, maintaining the nuclear portfolio 
becomes increasingly challenging in the current U.S. energy market since the low price of natural gas and 
the penetration of subsidized and low-marginal cost variable renewable electricity (VRE) are affecting the 
profitability of nuclear units. In this context, building new nuclear power plants will require increased 
competitiveness with reduced capital and O&M costs and increased revenues enabled by changes in market 
policies or increased flexible operation. Within the U.S. Department of Energy, Office of Nuclear Energy, 
the System Analysis and Integration Campaign has been acquiring the capability to model energy market 
economics in order to assist decision makers and nuclear utilities. The methods developed and codes 
acquired are displayed in Figure 1-1.  

 
Figure 1-1. Methods developed and codes acquired for electricity market analysis. 

The GCAM and MARKAL models solve the capacity expansion problem, simulating the energy markets 
in different U.S. and world regions over more than 100 years. These energy systems models calculate the 
least cost set of technologies over time that satisfy the specified demands within the bounds of the user-
defined constraints (technological, political, etc.). While these codes provide a scenario-based long-term 
perspective, they rely on simplified assumptions (based on 1 to 5-year time steps) to account for the daily 
variations in electricity prices and unit generation. This is why shorter timeframe economic market 
modeling codes were acquired to complement these analyses.  

The EDGAR (Economic Dispatch Genetic AlgoRithms) code solves the combined Unit Commitment and 
Economic Dispatch problems to find the optimal schedule of a fleet of generating units to meet the 
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forecasted grid demand over the next day in deregulated markets. It allows modeling a specific competitive 
grid market and to assess the impact of policies and technologies on the revenue of an individual unit. 
Alternatively, it can be used to demonstrate the feasibility of technology deployment scenarios proposed 
by capacity expansion codes. 

EDGAR relies on sets of load demand, wind and solar generation data with a one-hour time-step. Those 
can be generated out of historic data using the VARMA (Vector Auto-Regressive Moving Average) model 
in RAVEN (Risk Analysis Virtual ENvironment), to provide a statistical understanding of the expected 
range of performance of a market system. The VARMA algorithm generates synthetic data histories to 
build truncated histories that are statistically representative of the full year modelled, while maintaining the 
correlations within different sets of data.  

The objective of this report is to describe the capabilities acquired and developed within the SA&I 
Campaign together with the missing capabilities required to analyze economic scenarios of interest to DOE-
NE. The different codes are described in Section 2 together with the developments performed in FY 2018 
& FY 2019 under the SA&I Campaign. These different codes allow analyzing the energy markets 
economics in different types of areas (from a state, a utility, a country, the world) and time-frames (from 
minutes to more than 100 years) to complement each other and work towards a common analysis. In 
particular, Section 3 demonstrates with some example applications how the regional market analysis codes 
are used to drive simulations scenarios with daily market codes. For demonstration purposes, the economic 
analysis of the New York State is performed to assess the impact of different policies on nuclear 
competitiveness in the 2050 timeframe. 
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2. Codes and Methods Description  
The objective of this section is to describe the capabilities acquired and developed within the SA&I 
Campaign together with the plan for future developments. 

2.1 Global and Regional Market Codes  
The SA&I Campaign uses tools to model energy supply and demand on different time scales. In the longest 
timeframe, market models like GCAM and MARKAL provide insights on general market direction under 
different socio-economic and policy scenarios. Timeframe for model simulations are typically multi-
decadal in 5-year time steps and simulations into the 22nd century are necessary because of the long technical 
life of energy systems. These models do not have predictive value, but are useful in the exploration of 
alternative future socio-techno-economic pathways. In practice, they can inform on potential future 
deployments and retirements of the different types of generation facilities. The models are heavily data-
driven, and use different types of data, such as: 

- Macroeconomic data: projections of population (by state/region) and gross domestic product. 
Macroeconomic data are compiled by government agencies such as the Census Bureau, the Social 
Security Administration or the Congressional Budget Office. 

- Projections of energy demand: the demands (either for energy or for energy services) can be 
determined endogenously or exogenously based on macroeconomic data. 

- Technology data: current and potential future “technologies” have to be specified in detail. 
Examples of inputs needed to describe each technology include mass flows, energy expenditure 
and/or production, emissions generated, capacity factors, useful life, … Examples of technologies 
are a uranium mine (“resource” technology), an LWR (“conversion” technology) or a gasoline 
passenger car (“demand” technology).  

- Costs: the costs of raw materials, their conversion and/or transportation, as well as capital and O&M 
costs of all technologies. On the nuclear side, the SA&I Campaign periodically updates the 
Advanced Fuel Cycle Cost Basis report, which includes costs of materials and technologies 
involved in the nuclear fuel cycle [1]. For non-nuclear technologies, the successive Annual Energy 
Outlook (AEO) reports from the Energy Information Administration are heavily used. The AEO 
2019 [2] provides modeled projections of domestic energy markets through 2050. Beyond 2050, 
data comes from modeler judgement and/or expert elicitation when possible; understandably, the 
uncertainty in the input data increases for dates further in the future.  

- Constraints: constraints can be technological (e.g. a limit in the growth rate of deployment of a 
certain technology), or can be used to model different policy assumptions (e.g. a carbon tax).  

From this input information, the market models project demand and assess options for supply to meet the 
demand over every time period modeled. To account for the significant uncertainty associated with long-
term projections of model inputs, analyses are conducted based on multiple scenarios that consider 
variations in demand, fuel costs, policies, etc. Examples of policy implementations include the exploration 
of advanced technologies, technology portfolio standards, subsides or taxes on specific technologies, and 
carbon emissions mitigation.  

2.1.1 GCAM 
GCAM is a global integrated model [3] that represents the behavior of, and complex interactions between, 
five systems: energy, water, agriculture and land use, economy, and climate. GCAM has been under 
development for over 35 years. Throughout its lifetime, GCAM has evolved to address an expanding set of 
science and assessment questions. The original question to which the model was applied was the magnitude 
of mid-21st-century global emissions of fossil fuel CO2. Over time, GCAM has expanded its scope to 
include a wider set of energy producing, transforming, and using technologies; emissions of non-CO2 
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greenhouse and air pollutant gases; agriculture and land use; water supplies and demands; and physical 
Earth systems. It is increasingly being used in multi-model, multi-scale analysis, in which it is coupled to 
other models with different foci and often-greater resolution in key sectors. GCAM has been used to 
produce scenarios for national and international assessments ranging from the very first IPCC scenarios 
through the present Shared Socioeconomic Pathways. Hundreds of papers have been published in peer-
reviewed journals using GCAM and the model continues to be an important tool for scientific inquiry. 
GCAM is also a community model being used by researchers across the globe, creating a shared global 
research enterprise. 

For the analyses performed for the SA&I Campaign, the economic and energy system representation of the 
United States in the GCAM model is disaggregated from a single national representation to one that includes 
all 50 states. The electric power sector, in particular, is fully represented for each state to assess the 
contribution of alternative energy technologies for electricity generation at the state level. State-level energy 
projections provide a more detailed and nuanced understanding of long-term national energy needs. In 
particular, state-level nuclear energy use at present and into the future is simulated. This capability 
highlights potential regional issues of energy technology competition of alternative nuclear energy 
technologies within the context of the broader national and global energy system. 

2.1.2 MARKAL  
A MARKAL model [4] provides a framework, based on the Reference Energy System concept (RES, 
depicted in Figure 2-1), to connect existing and potential energy carriers and conversion technologies from 
initial resource extraction to ultimate consumption by consumers. The model solution identifies the lowest 
cost combination of energy resources and technologies that meets energy service demands over the entire 
modeling time period, subject to specified constraints. Environmental emissions, resource use, capital 
investments and operating costs of energy technologies are all tracked. In other words, the model determines 
the market share of each technology, which depends not only on its individual characteristics (technical, 
economic, and environmental), but also on the availability and cost of the fuels (from the supply side) it 
uses. 

BNL maintains two separate models of the U.S. energy system, a single-region model and a multi-region 
(10-region) model, shown in Figure 2-2. 

 
Figure 2-1. Reference Energy System Example. 
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Figure 2-2. MARKAL 10-region Model. 

 

2.1.3 GCAM vs. MARKAL  
While both GCAM and MARKAL are used by the SA&I Campaign to inform on the capacity expansion 
problem, there are important differences between the models. A critical difference is in the kinds of 
questions that these models are intended to explore, which leads to differences in the modeling framework 
and approaches for conducting analysis. The objectives and intended applications of the GCAM is broader 
than that of MARKAL. GCAM is referred to as an integrated assessment model, which incorporates 
agriculture, land-use, water, and climate modeling capabilities in addition to the representation of the energy 
and economic systems. MARKAL and the family of MARKAL models are more specifically focused on 
the energy system and changes to the energy system dependent on economic growth projections.  

While GCAM and MARKAL use similar types of data, the complexity and abundance of data used in the 
models, as well as different modeling assumptions/priorities, leads to differences in their input datasets. An 
example of different modeling approach is the treatment of VRE sources. MARKAL uses the commonly-
used time slice approach, where the availability of VREs is captured according to season (3) and time of 
day (4), while GCAM does not use time slices for representing electricity load duration curve. Instead, the 
additional cost of variable energy integration is estimated by calculating the backup capacity requirement 
and associated cost. For wind and solar without energy storage, a backup capacity requirement is calculated 
as a function of the share of wind and solar energy of total electricity generation. 

Underlying differences in the structure of the models also affect model results. In particular, GCAM and 
MARKAL have different approaches for determining the technology choice behavior. GCAM utilizes the 
discrete choice method, a probabilistic approach for determining the choice behavior among a set of discrete 
alternatives. In this method, a choice function, such as the logit function, is utilized along with the choice 
indicator, such as cost or profit rate, to determine the market share of available technology options. In this 
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approach, the single best choice (determined by the choice indicator) captures a large share of the market, 
but does not necessarily capture the entire market. Alternative higher cost or less profitable technology 
options may capture portions of the market reflecting consumer preferences, local variations in costs, and 
other non-observable factors. Technology options typically share the market unless the choice indicator is 
significantly divergent, in which case the best choice may capture the entire market. Policies for promoting 
or hindering specific technologies are achieved through the adjustment of the choice indicator, such as by 
adding a subsidy or tax to the technology cost. 

MARKAL utilizes a linear-programming approach to the technology choice behavior. In this approach, the 
technology choice is determined by an optimization problem as specified by the objective function, decision 
variables and a set of constraints. The objective function is typically a cost minimization or a profit 
maximization formulation, and the decision variables represent the choices made by the model, such as the 
level of technology deployment. The set of constraints applied to the linear relationships constrain the 
optimization problem and play an important role determining the outcome of technology shares. The least 
cost or the most profitable technology typically dominates market share, which is mitigated by the set of 
technology constraints. Constraints serve multiple functions, such as for setting deployment levels for 
technology policies or for capturing other non-observable factors that influence the technology choice. 

 

2.2 Daily Market Codes  
Daily market codes were acquired or further developed by the SA&I Campaign in FY 2018 to complement 
the Global and Regional Market analyses performed with MARKAL and GCAM. They perform economic 
market modeling on shorter timeframe providing essential information to account for some changes in daily 
load demand profiles or VRE generation profiles. This section describes the methods in EDGAR and 
RAVEN/VARMA together with the work accomplished in FY 2018 & 2019 by the SA&I Campaign on 
these codes. Since EDGAR and RAVEN/VARMA are new acquisitions from the Campaign and significant 
development work was performed to enable analysis requirements, their description is detailed in this 
section to serve as a reference in the future.  

2.2.1 EDGAR  
2.2.1.1 Introduction  
The EDGAR (Economic Dispatch Genetic AlgoRithm) code is an electrical grid modeling tool developed 
in the Nuclear Science and Engineering (NSE) division of the Argonne National Laboratory (ANL). It 
estimates the hourly power generated by each unit within a fleet in a deregulated market together with the 
electricity production costs by solving the unit commitment (UC) and economic dispatch (ED) problems 
following the approach described in Figure 2-3. The main novelty of EDGAR is its capability of accounting 
for highly non-linear constraints such as xenon-related constraints on nuclear reactors operation, while 
those are challenging to model using traditional algorithms based on Mixed-Integer Linear Programming 
(MILP) schemes. 

The UC problem in electrical power systems is a large family of mathematical optimization problems where 
the electricity generation of a set of generating units is coordinated and optimized to meet the energy 
demand at minimum energy production cost in a deregulated market. The continuous balancing of supply 
and demand in the power grid requires that each variation in the consumption needs to be instantaneously 
matched by a corresponding variation in the production. As a result, the solution of the UC problem 
determines which generating units in a given fleet need to be committed to meet the expected load over the 
next day. Basically, the UC problem solution provides a schedule for all the units in a fleet for one day, 
which specifies which units are on and off at every time-step (typically 1 hour).  

The ED problem is the short-term determination of the optimal output of previously-committed generating 
units to meet the load demand and the minimum reserve requirements, by minimizing the whole production 
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cost and by meeting the corresponding transmission and operational constraints. In particular, the ED 
problem solution specifies the power outputs of each active unit on a time-step basis.  

 

 
Figure 2-3. Description of the EDGAR code. 

As for the adopted algorithm, the EDGAR code minimizes the power generation costs of the system for 
each day by using a Genetic Algorithm (GA) for the UC optimization, and solves the ED problem for each 
UC scenario by means of a constrained Monte Carlo sampling approach. EDGAR optimizes the grid 
dispatch while taking into account reserve requirements and ensuring every unit is operating while meeting 
all its operational constraints.  

2.2.1.2 Methods overview  
2.2.1.2.1 Unit Commitment  

The EDGAR code relies on a GA for the UC optimization with the goal of minimizing the production cost 
of the fleet on the day ahead. GAs belong to the family of evolutionary algorithms, which mimic aspects of 
Darwin’s theory of natural selection. Upon completion, a GA will return an optimal or near optimal 
individual after a number of iterations [5]. In literature, several applications of GAs to solve the UC/ED 
constrained optimization problem can be found [6, 7]. 

The GA implemented in EDGAR follows this generic approach as shown in Figure 2-4. The basic idea is 
that a set of feasible, tentative UC schedules (chromosomes) on a given day is generated at random in the 
initial step. Each chromosome represents the schedule of the whole fleet of units over the entire day, and is 
characterized by an optimized ED scenario, which has a daily cost associated with it. As a consequence of 
the random generation process, these potential fleet schedules might not be characterized by low costs. 
Evolution proceeds by improving the initial population by the use of genetic operators, i.e., crossover and 
mutation. In particular, cheaper scenarios are selected more often and recombined to generate cheaper 
scenarios up to converge to the global minimum. Mutations are applied to some solutions to increase the 
genetic diversity. The new generation of UC scenarios has then its daily costs evaluated, and the process is 
repeated through generations until the termination criterion is fulfilled. Once the condition is met, the 
refined ED calculation is performed to compute the hourly cost and price profiles, before moving on to 
simulating the following day. 
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Figure 2-4. Genetic Algorithm procedure implemented for UC/ED calculation in EDGAR. 

 

As shown in Figure 2-4, the first step consists in generating tentative UC schedules. One of the main 
challenges is to inherently respect the operational constraints. In particular, many generators have 
constraints on times between start-up and shut-down, i.e., after the unit is started-up, it needs to be 
committed for a certain number of hours before it shuts-down, and vice versa. Every time the tentative UC 
solutions are generated, the minimum up/down time constraints need to be accounted for. At the end of a 
simulated day, the hourly state of every unit is used to automatically update the initial conditions for the 
evaluation over the next day. 

The key ingredient of the evolution process is the definition of a suitable metrics to establish which 
individuals should have a higher probability of being allowed to multiply and reproduce, and which 
individuals should have a higher probability of being removed from the population. The GA evaluation 
metrics is called fitness function. Fitness functions are very problem-specific. Since the goal is to minimize 
the production cost of the fleet on the day, the EDGAR code fitness definition is related to the overall cost 
associated with the corresponding UC scenario, i.e., the cheapest UC scenarios have better chances of being 
selected. Logically, the adopted metrics would be different if the optimization goal was different, e.g., 
instead of minimizing the overall operation cost, one might want to find the UC scenario which maximizes 
the profitability of the nuclear units.  
After the available UC individuals are ranked according to the chosen metrics, pairs of them are chosen as 
parents based on their fitness. It is a stochastic process of selection, which draws individuals on the basis 
of their performance as compared to other individuals, keeping the best scenarios and maintaining diversity 
of solution. This principle is essential in preserving the genetic diversity and helps keep the search away 
from local optima [5]. The parent schedules are recombined through cross-over operations to form a new 
generation of UC scenarios, i.e., the genetic material of two parents is combined by swapping a part of one 
parent with a part of the other, and two child UC scenarios are created. If the portions of chromosomes 
involved in the pairing process were chopped vertically and then adjoined, the minimum up-down time 
constraints might be violated. This does not happen if the portions of the parent string are chopped 
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horizontally and then adjoined. Since the initial population is generated by respecting the minimum time 
constraints, the application of this version of the crossover operator ensures meeting the constraints. The 
adopted approach is described graphically in Figure 2-5. 

 

 
Chromosome #1 

 
Chromosome #2 

Figure 2-5. Cross-over approach. 

After crossover has occurred, each one of the produced children undergoes mutation with a certain 
probability. With respect to the crossover operator, which exchanges genetic material between two 
individuals to create a fitter offspring, the mutation operator changes a small portion of an individual. In 
EDGAR, when a UC scenario is selected for mutation, a certain unit is randomly selected, and the 
corresponding schedule is altered. In particular, it can undergo through four types of possible mutations:  

- a committed unit has its daily profile re-sampled 

- a previously committed unit is shut down  

- a new unit is committed (with committed profile sampled) 

- a committed unit is replaced by a non-committed unit (with committed profile sampled) 

Finally, the ED calculation is performed on every child (new UC scenario obtained in the new generation) 
following the method described in the following section. The best scenarios are then selected for generating 
a new generation of children. Several generations are then evaluated until a convergence or termination 
criterion is fulfilled. For instance, this criterion can be based on the number of generations. Alternatively, 
it can be imposed that if the fitness of the best individual has not experienced any improvement within the 
last 5-10 generations, the GA run can be interrupted. Upon termination, the best UC scenario is then selected 
for refined cost evaluation (hour-by-hour cost and price) before starting next day’s evaluation. The “clearing 
price” is computed with EDGAR following the UC calculation, and is provided as an output of the code. 
This is the highest bid accepted during the day-ahead electricity auction, which sets the price that is going 
to be paid to all the committed generators whose bids are accepted. Quantitatively, the clearing price is 
equal to the marginal cost of the most expensive unit that was selected to be committed. 

2.2.1.2.2 Economic Dispatch  
Each UC scenario is characterized by a power generation cost which ultimately determines its fitness. A 
selection process combines UC scenarios to generate a new generation of tentatively cheaper UC scenarios. 
The overall power generation costs and the power dispatched by each generating unit are derived as 
solutions of the ED problem by adopting a constrained Monte Carlo sampling approach. The imposed 
constraints comprise output power boundaries for the generating units, minimum up and down times, limits 
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on the speed and the frequency of the operational transients, supply/demand balance over the simulated 
time window as well as provisions for different types of operating reserves. The solution of the ED problem 
is obtained by minimizing the total cost of meeting the demand for the next day, as shown in Eq. (1). The 
current model has an hourly time resolution, and the optimal solution is obtained by seeking the cheapest 
solution over a 24-hour time horizon. 

 

𝑚𝑖𝑛 𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡 = 𝑚𝑖𝑛 𝑐𝑝𝑔 𝑖, 𝑡
/,0

+ 𝐶34 𝑖, 𝑡 + 𝐶35(𝑖, 𝑡)
/,0

+ 𝐶893 𝑡 + 𝐶8:; 𝑡 + 𝐶<93 𝑡 + 𝐶9<93 𝑡 + 𝐶<=93 𝑡
0

 

(1) 

The first term represents the summation of the single unit power generation costs (𝑐𝑝𝑔(𝑖, 𝑡)), which are 
defined as: 

 𝑐𝑝𝑔(𝑖, 𝑡) = 𝑁𝐿𝐶 𝑖 ∙ 𝑢 𝑖, 𝑡 + 𝑀𝐶 𝑖 ∙ 𝑃 𝑖, 𝑡  (2) 

where 𝑁𝐿𝐶 𝑖  is the no-load cost for 𝑖-th unit [$], 𝑀𝐶 𝑖  is the marginal cost of the 𝑖-th unit [$/MW], and 
𝑃 𝑖, 𝑡  is the electrical power output of 𝑖-th unit at time	𝑡 [MW]. The second term represents the summation 
of the unit start-up (𝐶34 𝑖, 𝑡 ) and shut-down costs (𝐶35(𝑖, 𝑡)), [$].The last term represents the penalties 
associated with unmet demand and reserves. In particular, with respect to time	𝑡, 𝐶893 𝑡  represents the 
cost of unserved energy [$],	𝐶8:; 𝑡  represents the cost of over-produced energy [$], 𝐶<93 𝑡  represents 
the cost of spinning reserve not served [$], 𝐶9<93 𝑡  represents the cost of non-spinning reserve not served 
[$], and 𝐶<=93 𝑡  represents the cost of Regulation not served [$]. It should be noted that the fixed costs 
(e.g., capital cost, most of the fixed O&M costs, etc.) do not impact the solution that seeks the most cost-
effective way to schedule a group of power-producing units to meet demand and reserves profiles over the 
next day. 

As for the ED problem optimization, for each UC scenario, a large number of power histories (ED 
scenarios) are sampled for each one of the committed generating units. For each ED scenario, certain 
committed units are randomly sampled to increase their electrical power output (𝑖DE) and other ones to 
reduce it (𝑖FGHI) within the authorized limit in terms of output and ramp rates. The power sampling is 
calculated using the following equations: 

 𝑃 𝑖DE, 𝑡 + 1 = 𝑃 𝑖DE, 𝑡 + 𝑎 ∙ ∆𝑃LMN 𝑖DE, 𝑡  (3) 

 𝑃 𝑖FGHI, 𝑡 + 1 = 𝑃 𝑖FGHI, 𝑡 + 𝑎 ∙ ∆𝑃L/I 𝑖FGHI, 𝑡  (4) 

where 𝑎 is a random number sampled from the distribution 𝑈 0; 1 . A major outcome of this approach is 
to ensure that the constraints on the maximum power variation allowed are inherently met, and the 
operational constraints which might be induced by the unit power dispatched are accounted for. From this 
standpoint, let’s consider the case of nuclear units operated in a load-following mode. When the power 
level of a nuclear power plant is reduced, there are physics-induced constraints that potentially prevent the 
unit from ramping up to nominal power conditions, as further discussed in Ref. [8]. Once the power level 
is reduced, a thermal reactor unit may need to be operated at lower power for a number of hours due to the 
xenon poisoning level, which depends on the amplitude of the imposed power drop. The implementation 
of this physical effect is particularly troublesome in MILP optimization algorithm [9]. On the other hand, 
the implementation of this non-linear constraint in the proposed Monte Carlo sampling algorithm is pretty 
straightforward as explained in Section 2.2.1.3.2. 

At this point, the contributions of the different units to the reserve need to be evaluated for each UC 
scenario. EDGAR receives the hourly reserve requirement as an input of the code. However, for analyzing 
new grid setups, one needs to be able to estimate these reserve requirements as discussed in Section 
2.2.1.3.4. Assuming one knows the hourly reserve requirements, six different kinds of reserves are 
considered by EDGAR: spinning (𝑠𝑟 𝑖, 𝑡 ), regulation-up (𝑟𝑔𝑢 𝑖, 𝑡 ), regulation-down (𝑟𝑔𝑑 𝑖, 𝑡 ), non-
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spinning when the unit is committed (𝑛𝑠𝑟𝑛 𝑖, 𝑡 ), down (𝑑𝑟 𝑖, 𝑡 ), and non-spinning when the unit is not 
committed (𝑛𝑠𝑟𝑓 𝑖, 𝑡 ). The contributions provided by each unit are governed by the following constraints: 

 𝑠𝑟 𝑖, 𝑡 ≤ 𝑠𝑟V ∙ 𝑀𝑆𝑅(𝑖) ∙ 𝑢(𝑖, 𝑡) 

(5) 

 𝑟𝑔𝑢 𝑖, 𝑡 ≤ 𝑟𝑒𝑔V ∙ 𝑀𝑆𝑅(𝑖) ∙ 𝑢(𝑖, 𝑡) 

 𝑟𝑔𝑑 𝑖, 𝑡 ≤ 𝑟𝑒𝑔V ∙ 𝑀𝑆𝑅(𝑖) ∙ 𝑢(𝑖, 𝑡) 

 𝑛𝑠𝑟𝑛 𝑖, 𝑡 ≤ 𝑛𝑠𝑟𝑛V ∙ 𝑀𝑆𝑅(𝑖) ∙ 𝑢(𝑖, 𝑡) 

 𝑑𝑟 𝑖, 𝑡 ≤ 𝑠𝑟V ∙ 𝑀𝑆𝑅(𝑖) ∙ 𝑢(𝑖, 𝑡) 

 𝑛𝑠𝑟𝑓 𝑖, 𝑡 ≤ 𝑄𝑆𝐶(𝑖) ∙ 1 − 𝑢(𝑖, 𝑡)  

where 𝑠𝑟V, 𝑟𝑒𝑔V, 𝑛𝑠𝑟𝑛V are the ancillary service characteristic time constants [min], 𝑀𝑆𝑅(𝑖) is the 
maximum sustained ramp for 𝑖-th unit [MWh/min], and 𝑄𝑆𝐶(𝑖) is the quick start capacity for 𝑖-th unit 
[MWh]. To meet these constraints, the contribution of every unit is obtained by multiplying the 
corresponding upped bounds by random numbers sampled from the distribution 𝑈 0; 1 . Finally, the 
sampled contributions are weighted by the corresponding unit commitment schedule, i.e., 𝑢(𝑖, 𝑡).  

Once the power outputs from each one of the committed units are sampled, and as are the corresponding 
reserve contributions, the instantaneous balance with the prescribed values are verified by means of an 
internal loop. Thanks to this two-step procedure within the ED, the obtained power histories is assured to 
meet the global grid demand and to respect the singular unit operational constraints. The final ED scenario 
is verified to be feasible and it is characterized by a certain cost, which is evaluated according to the above-
defined cost function (Eq. (1)). At this point, once all the sampled scenarios are collected, the cheapest one 
is sorted out, and the fitness representative of the corresponding UC configuration is derived.  

2.2.1.3 EDGAR developments in FY18 & FY19 
Major developments were accomplished in FY 2018 and early FY 2019 on the EDGAR code system to 
improve its usefulness to the SA&I Campaign.  

2.2.1.3.1 Structural code improvements 
The EDGAR code was translated from MATLAB into Python to facilitate the portability to different 
machines and platforms (Unix Clusters, MacOSX and Windows Desktops). The development of the code 
is performed within the Gitlab repository (hosted by MCS division at Argonne), which allows efficient 
collaborative development and implementation of a quality assurance strategy. A parallel mode version of 
EDGAR was implemented, which allows significantly enhancing the computational performance of the 
code, which was found to be critical for solving a full UC/ED problem with sufficient convergence.  

Significant effort allowed re-organizing part of the EDGAR code to move away from calculation script to 
a more formal code structure (with a proper input, an executable, …). This was accomplished by leveraging 
the “Workbench” universal code interface (Open Source) developed by the NEAMS program to apply it to 
EDGAR, which provides the following benefits: 

- Optional access to the Workbench user interface with input validation and auto-completion features 
(plus some result visualization that we may set up in the future) – the user still has the option to run 
EDGAR as a standalone code outside of the Workbench user interface. 

- Input documentation that is automatically generated from the input structure description. 

- Structures for unit tests, those were implemented for better quality assurance strategy and are for 
checking the pre-, post-processing and execution logics. In particular, regression tests are 
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implemented to verify the results of the economic dispatch and of the unit commitment procedures 
with reference solutions (obtained with the AMPL code on the APS grid [10]). 

In addition, the Workbench [11] provides a common user interface for model creation allowing for its 
integrated codes to communicate and work together with limited coupling development [12]. In particular, 
the coupling between Dakota [13] and EDGAR was used in FY 2019 for demonstration purposes to enable 
solving “green-field” capacity expansion problem to optimize the number and capacity of each generating 
unit deployed. The Dakota software, which is already integrated within the NEAMS Workbench, is a 
sensitivity analysis/uncertainty quantification (SA/UQ) and optimization toolkit maintained by Sandia 
National Laboratory. This type of problem can also be performed by coupling EDGAR to RAVEN as 
further discussed in Section 2.3.3. 

2.2.1.3.2 Nuclear load following modeling 
To evaluate the impact of the load-following operation on the nuclear unit profitability, the physics-induced 
limitations affecting unit flexible operation capabilities need to be modeled. From this standpoint, a 
dedicated constraint describing the xenon poisoning-induced effects has been implemented in EDGAR as 
detailed in [14].  

The xenon constraint is considered by EDGAR for each individual nuclear unit with a reactivity balance 
criterion applied to assess the feasibility of the sampled power evolution at every time step. As shown in 
Figure 2-6, at day j, the nuclear unit ramp-up after a power drop (∆𝑃) can be performed only if the available 
reactivity margin (∆𝜌LM]^ 𝑗 ) is higher than the xenon negative reactivity insertion (∆𝜌`a ∆𝑃 ). 
Otherwise, it will be necessary to wait for the xenon to decay before starting a ramp to higher power level, 
which can typically require a few hours since the half-life of 135Xe is 9.2 hours. 

Finally, an additional constraint to be considered for the nuclear units is the one imposing the nuclear unit 
to stay at reduced power level for two hours after a power drop [15] to represent the need of limiting the 
thermal stresses induced on the internals. 

 

 
Figure 2-6. Implemented reactivity balance criterion which governs the reactor operation [9]. 

 

2.2.1.3.3 VRE curtailment 
The possibility of curtailing renewable energy source contribution was implemented in EDGAR in                
FY 2019. The curtailment is the reduction in the output of a generator from what it could otherwise produce 
given available resources, typically on an involuntary basis [16]. Because wind and solar generators have 
substantial capital costs but no fuel or flexible costs, the grid operators try to exploit their contributions as 
much as possible. Operator-induced curtailment of wind and solar energy is becoming more diffused as 
wind and solar energy penetration increase, and it typically occurs because of transmission congestion or 
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lack of transmission access, but it can occur for a variety of other reasons, such as excess generation during 
low load periods, voltage, or interconnection issues. 

Wind generation can be easily curtailed since turbines are typically grouped in the same location. On the 
other hand, solar generation ranges from large, centralized utility-scale photovoltaic power stations to 
distributed, residential, and commercial building integrated installations. The former contribution can 
generally be curtailed, the latter may not. In EDGAR, the sampled value for the wind power (𝑤𝑔(𝑡)) ranges 
from zero to the maximum power availability (𝑊(𝑡)), as shown in Eq. (6). The sampled value for the solar 
power (𝑠𝑔(𝑡)) is upper bounded by the maximum power availability (𝑆(𝑡)), and lower bounded by the 
fraction of the distributed solar power contribution (𝑟), which is not curtailable (Eq. (7)). 

𝑤𝑔 𝑡 = 𝑈[0,1] ∙ 𝑊(𝑡) (6) 

𝑠𝑔 𝑡 = 𝑟 ∙ 𝑆(𝑡) + 𝑈[0,1] ∙ 1 − 𝑟 ∙ 𝑆(𝑡) (7) 

As a consequence of the implementation of the renewable energy source curtailment capability, solar and 
wind power contributions were turned into unknown variables to be optimized. Accordingly, the sampled 
values of the non base-load unit power outputs (𝑃 𝑖9fg, 𝑡 ), the solar and the wind power contributions 
(𝑠𝑔 𝑡 , 𝑤𝑔 𝑡 ) are properly normalized to meet the portion of the load demand not covered by the must-
run based load units (𝐷 𝑡 − 𝑃 𝑖fg ). The corresponding normalization factor is expressed in Eq. (8). 

𝐷 𝑡 − 𝑃 𝑖fg

𝑃 𝑖9fg, 𝑡 + 𝑤𝑔 𝑡 + 𝑠𝑔 𝑡
 (8) 

The above-described approach was generalized in EDGAR to account for any type of fixed energy 
generation, simply described by their hourly generation profile and a maximum curtailment fraction. 

 

2.2.1.3.4 Operating reserve profile generation 
The objective of this work is to develop capability to generate realistic reserve profiles needed for EDGAR 
simulation, when historical reserve profiles are unavailable. Traditionally, power system uncertainty arises 
from load fluctuation and system contingencies requiring additional generation capacity to be reserved [17]. 
This extra generation capacity might be immediately available by increasing the power output of generators 
that are already connected to the power system (spinning reserve) or by those not currently connected to 
the system but whom can be brought online after a short delay (non-spinning reserve).  

The operating reserve requirement can be estimated from load demand and some renewable profiles, since 
they are meant to account for the uncertainty from renewable energy source contributions, load fluctuations 
and outages. Generally, the methods employed by the system operators to define operating reserve 
requirements are deterministic. However, it may happen that complex risky situations are not covered since 
deterministic approaches do not in fact measure the risk. Consequently, an approach based on deterministic 
criteria may lead either to higher operational cost, or to excessive risk [18]. That is why system operators 
such as ERCOT are starting to abandon deterministic rules in favor of probabilistic methods for defining 
their monthly non-spinning reserve requirements. The approach consists in setting a non-spinning reserve 
corresponding to percentile 95 of the historical total forecast error [18].  

For the sake of simplicity, in this preliminary work, a deterministic approach was adopted. In particular, 
the operating reserve requirements can be generated as a fraction of the largest contingency in the fleet, i.e., 
sudden and unforeseen shutdown of the committed unit with the largest capacity (𝐿𝐶(𝑡)), of the daily peak 
load (𝑃𝐿(𝑑𝑎𝑦)), and of the renewable energy source forecast (𝑅𝐸𝑆(𝑡)) [19]. To assess the validity of this 
approach, a comparison against some available data (based on South-Western U.S. region) was performed. 



Daily Market Analysis Capability and Results  
14 April 30, 2019 
 

 

The parameters reported in Eqs. (10) were adopted, and the corresponding outcomes are shown in Figure 
2-7. 

𝑂𝑝. 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝑡 = 𝑎 ∙ 𝐿𝐶(𝑡) + 𝑏 ∙ 𝑃𝐿(𝑑𝑎𝑦) + 𝑐 ∙ 𝑅𝐸𝑆(𝑡) (9) 

𝑎 = 0.35, 𝑏 = 0.02, 𝑐 = 0.15 (10) 

Finally, the correlation between the operating reserve requirements and the other ancillary services (i.e., 
regulation up, regulation down, downward reserve) were derived using available data. The total reserve 
requirement is equally split between the spinning reserve (𝑆𝑅) and the non-spinning reserve when the unit 
is on (𝑁𝑅) requirements. The other ancillary services, i.e., regulation up (𝑅𝐺𝑈), regulation down (𝑅𝐺𝐷), 
down reserve (𝐷𝑅), were determined as function of the spinning reserve profile. The contribution of the 
non-spinning reserve when the unit is off was not considered. 

𝑆𝑅(𝑡) = 𝑂𝑝. 𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) ∗ 0.5 (11) 

𝑁𝑅(𝑡) = 𝑂𝑝. 𝑅𝑒𝑠𝑒𝑟𝑣𝑒(𝑡) ∗ 0.5 (12) 

𝑅𝐺𝑈(𝑡) = 𝑆𝑅(𝑡) ∗ 0.1 (13) 

𝑅𝐺𝑈(𝑡) = 𝑆𝑅(𝑡) ∗ 0.1 (14) 

𝐷𝑅(𝑡) = 𝑆𝑅(𝑡) ∗ 0.1 (15) 

 

 
Figure 2-7. Comparison between the reference spinning reserve profile and the one retrieved by adopting the 

proposed deterministic correlation. 

 

2.2.2 RAVEN  
2.2.2.1 Introduction  
The modeling of energy grid systems has previously been constrained to either consider long-period 
averages with poor time resolution, or higher time resolution but exclusively based on pre-existing data 
from the historical record. While useful in some applications, neither of these methods provides a basis for 
thoroughly exploring the general effectiveness of a particular energy grid configuration. Long-term 
averages ignore important short-term phenomena such as high-frequency storage usage and unit power 
ramping to cope with volatility of demand, while historical samples are too few in number to provide a 
good statistical understanding of a given grid configuration (such as in the case of ensuring Loss of Load 
Probability constraint). Ideally, tens of thousands of high-resolution data sets for a variety of weather and 
grid measurements would be available to statistically comprehend the strengths and shortcomings of a 
configuration; in reality, rarely are more than a dozen years of recorded data available, and rarely with more 



Daily Market Analysis Capability and Results  
April 30, 2019 15 
 

 

than hourly time resolution. As a result, generation of synthetic time-dependent histories has become a field 
of interest in energy studies. 

A recent push has been made to simulate time-dependent histories (time histories) using a variety of 
sophisticated mathematical models. Among these is the application of Fourier detrending together with 
Vector Auto-Regressive Moving Average (VARMA) algorithms [20]. In this approach, Fourier analysis is 
used to remove seasonal trends from time histories, and the residual signals are analyzed using VARMA. 
The VARMA algorithm analyzes the signals of a set of coupled histories, such as solar intensity and energy 
demand, by treating them as coupled noisy signals with some underlying pattern described well by 
autoregression (AR) and moving average (MA). Once the Fourier and VARMA descriptors are well 
understood for a set of signals, new synthetic samples can be produced ad infinitum. The Fourier plus 
VARMA algorithm has previously been implemented in the Risk Analysis Virtual ENvironment (RAVEN) 
[21]. 

The existing RAVEN algorithms (including VARMA and Fourier detrending) make it possible to produce 
functionally limitless numbers of identically-distributed and independent samples. This enables statistical 
analysis of grid configuration quality [22]. Without statistical sampling, at best a grid market analysis study 
(including both capacity expansion or unit-commitment/economic dispatch analyses) can determine the 
ideal configuration for one specific set of weather and grid behaviors from among many possible such 
scenarios. With statistical sampling, grid market analysis studies can determine the best configuration for 
any likely outcome. 

2.2.2.2 VARMA description 
The VARMA algorithm as contained in RAVEN consists of several algorithms that together attempt to 
capture and reproduce the essential characteristics of time-dependent signals such as weather and energy 
grid measurements. Within the RAVEN framework, the VARMA algorithm is embedded as a Reduced-
Order Model (ROM), allowing it to be trained, saved, and sampled repeatedly. 

The internal training algorithms for the VARMA ROM consist of two steps: seasonal detrending through 
Fourier analysis, and coupled residual characterization via the Vector Auto-Regressive Moving Average 
(VARMA) algorithm. 

The Fourier detrending process involves determining the impact of Fourier signals with user-provided 
periods on the training history. The Fourier components 𝐹(𝑡) of the training signal are calculated as 

𝐹 𝑡 = 	 𝑐/	sin	
2𝜋
𝜆/
𝑡 + 𝜂/

{

/|}

 (16) 

where 𝑖 indexes the user-provided periods, 𝑐/ is a scaling coefficient, 𝜆/ is the provided period, and 𝜂/ is a 
phase adjustment. Least-squares fitting is used to determine the optimal fit of all 𝑐/, 𝜂/ to the training data, 
after which the full Fourier signal is subtracted from the training data, leaving a residual noise, a signal 
comprised of deviations from the periodic trends, 

𝑅 𝑡 = 𝑇 𝑡 − 𝐹 𝑡  (17) 

where 𝑇(𝑡) is the original training data and 𝑅(𝑡) is the residual noise. It is worth noting that the choice of 
detrending periods 𝜆 is an essential component to effective VARMA training. If insufficient seasonal and 
diurnal trends are removed from the signal, the residual noise 𝑅(𝑡) will exhibit an inflated variance, which 
will translate into abnormally noisy synthetic signals and may produce unrealistic values. If over-selection 
of the periods occurs, then the signal may either be overfit and demonstrate nearly identical synthetic 
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signals, or numerical instability may present with unphysical results. RAVEN offers some tools such as the 
Fast Fourier Transform as guides for choosing the most important cyclic trends in a training signal. 

After performing Fourier detrending, the residual signal 𝑅 𝑡  is characterized with Auto-Regressive 
Moving Average (ARMA) algorithms. In the event 𝑅(𝑡) consists of several signals (such as load, solar, and 
wind data) that may be correlated, the Vector ARMA (VARMA) extends the ARMA.  

2.2.2.2.1 Single-case: ARMA 
The ARMA analysis is performed ideally on a Gaussian normally-distributed signal, so the residual signal 
from Fourier detrending is transformed via its cumulative distribution function 𝑓 𝑡  to be distributed in a 
Gaussian manner, 

𝑦(𝑡) = Φ�� 𝑓(𝑅(𝑡))  (18) 

where Φ is the Gaussian normal cumulative distribution function (CDF) and 𝑓(𝑡) is the (empirically-
derived) cumulative distribution function of the residual signal. 

The Auto-Regressive (AR) portion of the ARMA seeks coefficients that best interpret 𝑦 at any given time 
𝑡 as a function of its preceding terms in time, or lag terms, 

𝑦0�< = 𝜙/	𝑦0�/ + 𝜖
;

/

 (19) 

where 𝜙/ are regression coefficients, 𝑃 is the number of lag coefficients to include in the sum, 𝑦0�� signifies 
the discrete value of 𝑦 at the time step previous to 𝑡, and 𝜖 represents a random Gaussian noise component. 
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Restated, the AR value of any given time step 𝑡 is regressively determined by the sum of components at 
previous time steps, plus a random noise component. 

The Moving Average (MA) is a rolling average among a finite number of lag terms, and is added to the 
auto-regressive model to yield the ARMA, 

𝑦0 = 𝜙/𝑦0�/ + 𝜖 + 𝜃�𝜖0��

�

�

;

/

 (20) 

where 𝑄 is the number of lag terms to include in the rolling window for the moving average, and 𝜃 is a 
fitting coefficient associated with the moving average lag term. The coefficients 𝜙, 𝜃 are fitted to maximize 
a likelihood function, as described in [20] and [23]. 

Once the fitting for 𝑐, 𝜆 in the Fourier detrending as well as the ARMA coefficients 𝜙, 𝜃 have been 
determined, the ARMA model is trained and can provide independent, identically-distributed samples by 
the following process: 

1. Randomly sample a number of values from a Gaussian normal distribution equal to the trained 
history length, and place them one after another as a history, then apply the ARMA regressive terms 
to calculate each value in the new history 𝑦(𝑡). 

2. Transform the Gaussian noise to fit the original training residual noise distribution using the CDFs 
of both distributions to obtain the residual noise 𝑅(𝑡) of the new sample: 

𝑅 𝑡 = 𝑓�� Φ(𝑦 𝑡 )  (21) 

Add the Fourier seasonal trends to the new residual noise sample to obtain the full synthetic history 𝑆(𝑡): 

𝑆 𝑡 = 𝐹 𝑡 + 𝑅 𝑡  (22) 

This process can be repeated as many times as desired for statistical sampling. 

 

2.2.2.2.1 Extension to multiple coupled variables: VARMA 
Extending the ARMA to include multiple variables while maintaining the correlations within these 
variables is straightforward. Because the Fourier detrending is deterministic, any coupling due to season 
patterns is captured by applying the Fourier detrending to both signals. Remaining coupling in the residual 
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noise of the signals is captured by extending the AR and MA to consider not only lag terms in their own 
history, but lag terms in the history of the correlated signals as well. The AR component is given by 

𝑌0 = Φ
;

/

𝑦0�/ + 𝜇 (23) 

where each element in 𝑢 is determined by the correlation between the time series in the moving average, 

𝜇 = 𝜖 + Θ�𝜖0��

�

�

 (24) 

The dependency of the moving average term on the vector auto-regression determines the vector auto-
regression equation. Letting 𝐿 be the lag operator, so that 𝐿𝑦0 = 𝑦0��, then the VARMA representation is 

𝑌 Π�

�

/

𝑌0�/ = Θ 𝐿 ��Φ 𝐿 𝑌0 (25) 

 

with the matrices Π/ given such that 

𝐼{ − Π�𝐿/
�

{

= Θ 𝐿 ��Φ 𝐿  (26) 

Sampling the VARMA follows the same pattern as sampling the ARMA, resulting in a vector of correlated 
signals. 

2.2.2.3 VARMA developments in FY18 & FY19 
While the initial implementation of the VARMA was instrumental for several analyses [22], some 
limitations were found as it was applied to a variety of applications. Primarily, the VARMA algorithm 
assumes that after Fourier detrending occurs, the residual signal is distributed uniformly throughout the 
signal. In reality, significant time dependence was observed for many signals of interest. For example, 
considering a year-long energy load signal, the variance of the residual was much larger in summer than 
winter, and larger in winter than spring or fall. Treating this distribution as though it were uniformly time-
independent resulted in much wider variance in the spring and fall and reduced variance in the summer. 
This wider variance translated into occasional very low demand during already-low load seasons, and 
occasional very high demand in already-high demand seasons. On a shorter time-scale, load residual 
variance is high during the transitions between days and night, but in general is smaller during the middle 
of the day and night. Treating this as uniform sometimes resulted in much lower loads during the night and 
much higher loads during the day. 

The issue with significantly lower yearly maximum or yearly minimum values can be seen in the context 
of grid capacity optimization. The efficient operation of baseload plants assures that by definition they are 
very rarely curtailed. If the synthetic histories generate too many hours with low load during the year, even 
if a proportional number of hours with high load are also generated, the resulting optimal mix will include 
less baseload and more variable sources. See for example Figure 2-8, showing the original training data 
discussed in Section 3.2 (NYISO, load, 2018) in solid blue in the foreground and 100 synthetic samples 
from the basic ARMA in the background as an orange cloud. The x-axis of each figure has the months 
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marked at the middle (15th day) of each month. Note that the synthetic samples tend to show significantly 
more variance in the spring and fall than the original data, and the lowest signal values are much lower as 
a result. Also note the signal shows much lower values during the summer months. 

 
Figure 2-8. Training data with 100 VARMA synthetic samples. 

This highlights the need to accurately capture the distribution of values from the training data reasonably, 
despite the time-dependent residual variance. Two variance handling methods for the VARMA were 
conceived and implemented as part of this work: segmentation and distribution preservation. These methods 
have both been added to the VARMA in RAVEN and are available as options to the user. Another 
requirement for the work presented here was a reduction in history length without reducing fidelity of the 
simulation. Due to the complexity of the economic market problem, some analyses cannot be performed on 
signals with high resolution because this easily results in hundreds of thousands of time steps to consider. 
On the other hand, smoothing out this resolution can destroy important physics involved in moment-to-
moment operation of the grid components. As such, an ideal computational signal would comprise a small 
subset of a year-long history while both representing the full history as well as maintaining the fidelity of 
the signal. To deliver this, segment clustering was implemented in the VARMA algorithm in RAVEN. 

The newly-developed algorithms of history segmentation, distribution preservation, and segment clustering 
are discussed in more detail in the following sections. 

2.2.2.3.1 History Segmentation 
Segmentation allows the training history to be divided into many discrete segments and have a separate 
VARMA model trained on each individually. In this manner, the seasonal time dependence of residual 
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variance can be localized and prevented from incorrectly informing other segments. The number of 
segments is left to the user. 

 
Figure 2-9. Training data with 100 VARMA synthetic samples, using weekly segmenting. 

As shown in Figure 2-9, the abnormal lows are significantly reduced during the spring and fall, and the 
summer values are much more in line with the training data, although new lows are introduced around the 
seasonal transitions. This assures both peak and baseload power requirements will be more in line with the 
original training data. However, segmentation can have undesirable effects. Because each segment is 
represented exclusively by an independent model, abnormal events can only be replicated within that 
segment. For example, if an unusually high load is observed in the training data during February, and the 
training is segmented by months, the resulting variance introduced by the high load in February can only 
be seen in Februaries in the synthetic histories. For example, see the end of the summer peaks in Figure 
2-9, where the high variance synthetic values are located immediately around the high variance in the 
original signal. Taken to an extreme, segmenting by days assures that a high load on a particular day in the 
training data yields a high load during the same day for all synthetic samples. This can lead to a synthetic 
sample that does not exhibit sufficient uniqueness or variation for the statistical analysis of a grid 
configuration. As a result, care should be taken to balance the benefits of segmentation in limiting time-
dependent variance with the need for variation among samples. 

2.2.2.3.2 Distribution Preservation 
The second tool to address time-dependent signal variance is distribution preservation. This method seeks 
to nearly preserve the training data’s statistical distribution in synthetic samples. By constructing an 
empirical distribution of both the training data and a given synthetic history, a transform can be applied to 
the synthetic history to restore the distribution of the training data in the synthetic sample. This approach 
preserves the capacity for particular measurements to be higher or lower in synthetic histories, but each 
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history will have the same general distribution as the training data; that is, the same total number of high 
and low values throughout the sampling space. 

 
Figure 2-10. Training data with 100 VARMA synthetic samples (left) using distribution preservation, (right) using 

monthly segmentation and distribution preservation. 

Figure 2-10 shows the use of distribution preservation both alone as well as along with segmentation. Note 
that without segmentation, while the distribution of the original training signal is preserved in the synthetic 
samples, occasionally very large loads are obtained in regions that are unrealistic. When both are used, 
there is still notable variability between synthetic histories without producing unrealistic signals. 

The main observed drawback to distribution preservation is that the overall maximum and minimum values 
of the training data are enforced in the synthetic signal. This disallows unusual events to occur that would 
exceed the bounds of the original training signal. Future developments of this methodology may include 
relaxing the distribution matching, allowing some bounded variation while maintaining some of the original 
signal’s distribution. 

2.2.2.3.3 Segment Clustering 
In order to preserve the fidelity of a high-resolution training set while also producing a history with a small 
number of points, a method of clustering history segments was devised. This method assumes that history 
segmentation is employed as discussed above, and as implemented is compatible with distribution 
preservation. The clustering concept is to observe identifying characteristics in the VARMA ROMs for 
each segment, and then group together VARMA ROMs whose representation is sufficiently similar. As a 
result, only one sample from each cluster is required to obtain a stochastic representation of the training 
data, possibly reducing the history length by a significant factor. 

To perform segmented clustering training, first the Fourier detrending is divided into two groups: periods 
longer than the segment length, and periods within the segment length. Before segmenting occurs, the 
Fourier detrending is performed on all periods longer than the segment length and removed from the training 
signal. The partially-detrended signal is then segmented into user-defined lengths. For each segment, the 
remaining Fourier and VARMA training is applied to the associated section of the training data. The 
properties of each segment VARMA are then collected for segmenting. The clustering features for each 
VARMA include the shorter Fourier period coefficients 𝜆/ and phase shifts 𝜂/, the VARMA variance of the 
residual noise 𝜖, and the mean of the long Fourier signal within the segment. 

RAVEN provides access to a plethora of clustering algorithms, any of which can be applied to cluster the 
segment VARMA ROMs. Some clustering algorithms, such as affinity propagation, automatically 
determine the appropriate number of clusters to use based on the clustering features, while others such as 
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k-means take the number of clusters as input. The former is useful for determining the level of clustering 
reasonably available to the data, while the latter is useful for specifying the level of data reduction required. 

 
Figure 2-11. Clustering training data (left) weekly (right) daily. 

 

After clustering the segments, the clustered VARMA is considered trained and prepared to sample. To 
sample the clustered VARMA, one random segment VARMA from each cluster is selected (including its 
long Fourier trend) and sampled. Finally, the resulting histories are placed together as a single history of 
disjointed segments. Note the cluster representation history (or truncated history) can be much smaller than 
the original history, and the segments are in no particular order. Rather, they represent the variety of 
prototypical signals that exist in the full synthetic histories, were they to be generated. 

Note also when using the clustered VARMA that the truncated history does not represent the frequency of 
the clusters. That is, each cluster is represented exactly once, regardless of how many segments may belong 
the cluster. The multiplicity of each cluster is also made available so that analysis can be appropriately 



Daily Market Analysis Capability and Results  
April 30, 2019 23 
 

 

extrapolated as though it were a full synthetic history. For example, see Figure 2-12. The representative 
samples are less than a tenth of the original signal, but demonstrate similar volatility, maxima, and minima. 

The synthetic samples supplied to EDGAR in Section 3.2 for stochastic analysis of grid configuration 
employed all three of the improvements discussed, clustering on daily segments resulting in histories of 14 
prototypical days. 

 
Figure 2-12. Truncated Synthetic Signals (orange) and original training data (blue) using 14 clusters of day-long 

segments arbitrarily located at the beginning of the year. 

 

2.3 Development Pathway 
The current daily market modeling capabilities developed and acquired by the SA&I Campaign can be used 
for performing a wide range of economic modeling analyses. For instance, one may look at modeling a 
specific U.S. grid market and to assess the impact of policies and technologies on the revenue of an 
individual unit. Alternatively, one may be interested at verifying the feasibility of a deployment scenario 
provided by GCAM or MARKAL, as discussed in Section 3 for demonstration purposes. Additional 
developments proposed in this section will enable these analyses and help building expertise on daily 
market economic modeling within the Campaign. 

2.3.1 Improvements in EDGAR  
Remaining effort in FY 2019 will focus on implementing storage unit modeling in EDGAR which requires 
some important modification of the economic dispatch logic. Currently, the ED optimization is performed 
for each hour, without possibility of anticipating on future hours. This implementation enables the smallest 
optimization problem and facilitates convergence to the best solution of the current ED problem since 
thermal units do not need to vary their power level in anticipation of a future higher or lower demand. 
However, storage units require to be able to anticipate future demand to decide if they need to store 
electricity or to wait until optimum time before releasing their stored energy. Consequently, the economic 
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dispatch optimization should be changed to enable optimization on multi-hour time-slices. This approach 
will also improve the current results obtained for nuclear load following, since those have physical 
constraints that would benefit from the capability to anticipate on future time-steps in order to decide if 
they should change their power output. 

Additional effort is required to try to further reduce the computational burden needed to solve the UC 
problem by implementing simple machine learning strategies. The best UC solutions from the previous day 
can be provided on each new day as the first generation of UC solutions. This is not straightforward since 
the initial conditions for each unit will likely have changed and may require to re-sample some of them. 
Currently, the probability of undergoing different types of mutations is fixed, while it could be varied in 
the future from one generation to another in order to focus on the most efficient mutations.  

Additional longer-term improvements are needed to extend the types of analyses done with EDGAR and 
should be the focus of future years. While EDGAR solves the day-ahead market problem, estimating the 
hour-ahead and real-time costs would enable to observe the short-term impacts of the uncertain prediction 
of renewable sources. The EDGAR code currently cannot estimate the unit revenue ensuing from the unit 
participation to ancillary service market. This problem is non-trivial as EDGAR uses a Monte Carlo 
approach, while the reserve income requires derivative calculations. Finally, continued improvement of the 
core structure, its computational performance, and the continued implementation of additional unit tests are 
required for quality assurance purposes. 

2.3.2 Improvements in RAVEN/VARMA  
2.3.2.1 Multiyear VARMA training 
The current VARMA algorithm in RAVEN trains on a single time period and reproduces samples 
representative of that same time period. In the work described in Section 3.2, this means training on one 
year of data (2018) and producing synthetic histories that are representative of a single year. Often, more 
than one year of measurements are available for training the VARMA and could be used to improve the 
comprehension of local variance in the signal. This would allow several years of data to be provided as 
training materials. 

In order to make use of multiple years in VARMA training, a few considerations need to be taken. For 
instance, consider grid load. When comparing historical data from 2008 and 2018 as training from the 
VARMA, for growing areas we expect the yearly mean load to increase. This increase is not generally 
cyclic, requiring special treatment to treat both years as indicative training data for general VARMA 
training. Identifying and removing growth trends could enable this use of multi-year data for VARMA 
training. 

2.3.2.2 Physicality of VARMA clustering 
The truncated histories produced as a result of VARMA clustering require detailed post-processing to 
determine the effectiveness of the mathematical clustering approach. The currently-implemented clustering 
technique is entirely mathematical and should be considered based on physical models to determine the 
validity of the clustering. For example, one might expect summer days to be clustered separately from 
winter days, and weekends and holidays separate from workdays. This validation effort would provide 
valuable insight into the clustering methodology and guide future developments in history reduction 
through clustering. 

Similarly, outlier segments should be considered carefully when clustering, and further comparison to 
physical models is needed to determine how well these outliers are captured in the clustering algorithm. 
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For example, exploring how the clustering treats major holidays as exceptions to normal workday patterns 
should be considered to assure the appropriate variance of events is captured in the reduced histories. 

2.3.3 Improve synergies between RAVEN and EDGAR 
The current workflow to provide synthetic time series to EDGAR for grid configuration evaluation involves 
the following steps: 

1. Obtain historical data for the desired time history trends (e.g. demand, prices, wind, solar, etc.). 

2. Train VARMA models in RAVEN based on historical measurements. 

3. Produce a series of synthetic signals using RAVEN as desired for use in EDGAR. 

4. Deliver package of pre-sampled synthetic signals to EDGAR. 

5. Perform EDGAR simulations on selected synthetic signals. 

In other similar analyses [22, 24], pairing the grid dispatch optimization with the synthetic history 
production allowed an as-needed synthetic history production for the dispatch analysis, which reduces the 
manual workload and potential points of failure that comes from separating the two activities. In addition, 
the uncertainty quantification and optimization algorithms already existing in RAVEN become available 
for exploring various grid configurations in EDGAR via sampling a variety of VARMA time simulations. 
To restore this synergy, it is only necessary to create an interface between EDGAR and RAVEN. Because 
RAVEN is naturally designed to interface with other codes, the requirements to create an interface are well-
established and understood and should require minimal effort. The resulting workflow would bring together 
the uncertainty quantification and synthetic sampling of RAVEN with the dispatch optimization of 
EDGAR, closing the gap that currently must be bridged manually. 

In the approach proposed in Section 2.2.1.3.4, the profiles for the ancillary service requirements, i.e. 
regulation up and down, spinning reserve etc., were retrieved from load, wind power and solar power 
profiles by adopting suitable deterministic correlations. In common practice, the methods employed by the 
system operators to define operating reserve requirements are generally deterministic and depend only on 
the size of typical load variations [25]. They are insensitive to the level of renewable penetration in the 
system. Since deterministic approaches do not measure risk, in some circumstances complex high-risk 
situations are not sufficiently represented. Because of this, system operators are starting to transition from 
deterministic rules in favor of probabilistic methods to define their monthly reserve requirements [26]. 
From this standpoint, the RAVEN framework can be used to create a statistically-meaningful set of coherent 
scenarios using load and renewable patterns. By statistically approaching a particular energy system mix, 
reserve requirement profiles for EDGAR can be generated with RAVEN by means of a probabilistic 
approach. In this way, a trade-off between cost and risk can be quantified, instead of avoiding all risk at 
almost any cost.  
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3. Example of application: analysis of NY-ISO 
This section illustrates the full method developed for grid analysis shown in Figure 1-1, where regional 
market analysis codes are used to drive simulations scenarios with daily market codes. It is applied for 
demonstration purposes and to build expertise on daily market analyses. The economic analysis of the New 
York region is performed to assess the impact of different fleet configurations on energy generation cost in 
2050. The deployment scenario extracted from GCAM is used to provide long-term (2050) projection on 
the electrical grid components, those are being modeled using the EDGAR code to investiage the feasibility 
of this scenario based on hourly discretization. EDGAR relies on load and renewable data generated using 
VARMA. This exercise is especially useful to help the Campaign better understand what are the 
specificities of the different market modeling codes acquired and developed, what type of grid data is 
involved, what are the assumptions these codes rely on and their quantitative impact, and where are the 
remaining gaps in our tools those need to be addressed. 

3.1 Deployment scenario description  
Daily market codes use the installed capacity by technology provided by long-term market analysis models 
such as GCAM or MARKAL. The daily market analyses focus on a specific deregulated market. New York 
ISO (NY-ISO) has been selected for initial analysis, because it is a mostly deregulated market with 
significant fraction of nuclear and wind generations foreseen in 2050, and because the data available from 
NYISO can be readily used by RAVEN to generate representative synthetic samples as described in Section 
3.2. Subsequent analysis will focus on Texas, and data from ERCOT will be used for training in that case. 
Either GCAM or MARKAL can provide the required information, with the following caveats: 

• GCAM provides state-by-state electricity generation. The electricity generation can be converted 
into installed capacity by assuming an average capacity factor for each generation type (see Table 
3-12).  

• MARKAL projects the installed capacity for each of its 10 regions. The regions containing New 
York and Texas are respectively the Middle Atlantic (MDA) and West South Central (WSC) 
region. The MDA region, in addition to New York, comprises New Jersey and Pennsylvania. The 
WSC region includes Texas, Arkansas, Oklahoma and Louisiana. It is noted that Louisiana is a 
regulated state, but its overall contribution to the WSC region is sufficiently small that WSC might 
be treated as a deregulated region. 

As noted in Section 2.1.1, the presented long-term market analysis is based on multiple scenarios that 
consider variations in demand, fuel costs, policy implementations, etc. Typically, a business-as-usual 
scenario is used as reference, where the current cost assumptions and policies are maintained for the 
duration of the simulation. In particular, reference scenarios generally do not model any explicit future 
climate policy interventions.  

To demonstrate how the long-term market modeling tools interact with daily market analysis codes, an 
existing GCAM reference scenario was selected to provide boundary conditions (i.e. installed capacity and 
a consistent set of costs) to EDGAR. In this scenario, “business-as-usual” means that there is no explicit 
carbon tax in effect, but there are two relevant policies currently in place that may affect coal and other 
fossil fuels in the real world. The first is an emissions limit of 1,400 lbs of CO2/MWh (which might be 
relaxed to 1,900 lbs CO2/MWh in the near future). There is also a federal tax credit on CO2 capture and 
storage, called Q45, that provides $50/metric ton of CO2 for sequestration. This is a credit and does not 
penalize fossil fuels. Other model assumptions include that current nuclear plants do not obtain a subsequent 
license renewal that would allow them to operate passed their current 60-year life, which results in the 
entire current fleet retiring by 2050. Retirements are complete for the nuclear plants in New York by 2040.  
New nuclear power plants are allowed after 2025 with a set of costs consistent with light water reactors and 
UO2 fuel. The capital cost for new nuclear plants is 5,500 $/KW, consistent with data published by the EIA 
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[27]. In this scenario, there is no technological learning accounted for, which should reduce costs and 
enhance nuclear penetration after the first few new builds.   

The U.S. electricity generation grows by two thirds from the current 15 EJ to 25 EJ in 2050, but the 
electricity demand in New York is almost constant, because New York state is expected to be losing 
population in this time interval. The installed capacity shown in Figure 3-1 exhibits a slight increase because 
of the enhanced presence of variable renewables in 2050, with a low capacity factor as shown in Table 
3-12. Coal and natural gas remain the main sources of electricity and comprise just over 50% of the total 
generation today, and just under 50% in 2050. Nuclear loses market share from around 18% in 2015 to 7% 
in 2050 because of plant retirements and limited builds. Variable renewables increase their penetration from 
around 5% in 2015 to 22% in 2050. Note that the scenario under consideration is policy neutral, and these 
behaviors are mostly driven by overnight capital costs. 

 

 
Figure 3-1. Installed capacity by generation type for New York (GCAM). 

 

Table 3-1 shows the actual and GCAM electricity generation in 2015, the GCAM electricity generation in 
2050, and the actual 2015 installed capacity. Electricity generation in 2015 looks consistent, with small 
differences between GCAM and actual data attributed to the fact that the model was calibrated to historical 
data until 2010 only, and not for 2015. The 2050 installed capacity used in the daily market analysis is 
scaled from the 2015 data according to the trends seen in the electricity generation. Work is underway to 
develop a capacity-dispatch version of GCAM that will eliminate this approximation, with variable capacity 
factors. Note that the conversion from generation to capacity is done in a post-processing step. The analysis 
performed with EDGAR in Section 3.3 can be used to confirm the feasibility of the modelled grid by 
showing that the demand and reserve requirements can always be met with installed capacity, and returning 
the effective capacity factors.  
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Finally, work is also underway to update the U.S. MARKAL multi-region model with a full set of consistent 
costs so that MARKAL results can in the future be used to inform daily market analysis. 

 
Table 3-1. Actual and GCAM Electricity Generation and Installed Capacity. 

 Generation (EJ/yr) Installed Capacity (GWe) 
 2015 (EIA) 2015 (GCAM) 2050 (GCAM) 2015 (EIA) 
Coal 0.09 0.06 0.05 2.13 
Gas 0.20 0.20 0.22 20.70 
Oil 0.01 0.01 0.01 3.46 
Biomass 0.01 0.00 0.01 0.57 
Nuclear 0.16 0.16 0.07 5.40 
Hydroelectric 0.09 0.09 0.09 4.7 
Wind 0.01 0.02 0.07 1.75 
Solar 0.00 0.00 0.01 0.08 

 

3.2 Synthetic data generation 
In order to consider the wide range of possible scenarios which a particular configuration of the NYISO 
grid is expected to cope with, synthetic samples are employed as described in this Section. Since EDGAR 
UC/ED simulations are computationally expensive, it was also critical to reduce the full year analysis to 
only a few representative days by using the clustering approach developed with VARMA. The generated 
samples are the result of training VARMA models within the RAVEN framework and sampling a number 
of times to produce the variable range of scenarios needed for EDGAR simulations. 

To represent the New York region, historical data displayed in Figure 3-2 were obtained from the NYISO 
to provide total load (a.k.a. demand), wind electrical production, hydropower electrical production, and 
other renewable production (including biomass and solar) [28]. VARMA training is only performed on the 
total load demand and renewable generation. The other thermal generation will have their power output 
optimized with the EDGAR code. Data for the full year 2018 were retrieved from the NYISO website with 
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a five-minute resolution. These five-minute resolution data were averaged to produce hourly measurements 
of the four histories required by EDGAR for day-ahead UC/ED analyses.  

 
Figure 3-2. Hourly training data for 2018 NYISO. 

The Fourier trends specific to each signal were determined using Fast Fourier Transform (FFT) analysis, 
and the desired cycles retained based on importance. The Fourier periods for each signal are displayed in 
Appendix A. Note that often the diurnal, yearly, and seasonal periods have significant impact on the 
individual signals.  

After trying many potential combinations of clustering settings and segmentation lengths, clustering by 
days produced the reduced histories that most typified the original signal. The clustering strategy employed 
was KMeans with 14 clusters. The number of clusters was decided upon based on the recommendation of 
several other clustering strategies including KMeansShift and AffinityPropogation, and considering the 
limitations imposed by EDGAR’s requested sample size. The resulting daily clusters appear in Figure 3-3. 
The different colors in Figure 3-3 indicate 14 clusters. Note that while Demand is shown here, the clustering 
algorithm is applied simultaneously to all four signals because they are assumed coupled and therefore non-
separable. 
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Figure 3-3. NYISO Daily Clustering, Demand. 

To more clearly see where particular clusters appear, they can also be divided into individual plots as in 
Figure 3-4. Note that some clusters are seasonal (clusters 0, 2, 3, 7, and 8) while some are periodic. These 
clusters were obtained mathematically. Additional effort is needed to physically interpret what types of 
days are clustered (e.g. day of the week, season, working days, etc.). Again, only one history (demand) is 
shown by cluster here, but the clusters are identical among the metrics. The figure is intended to give a feel 
of cluster location, not the magnitude of each time history within each cluster. 
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Figure 3-4. Daily Clustering by Cluster. 

As in the process described above, 100 synthetic histories were produced by sampling one VARMA from 
each cluster and adding the associated Fourier trends. This yields a 14-day truncated history with each day 
comprising a single representative day from the year. Note also that the size of each cluster is different. 
Thus, the truncated history cannot be considered proportional to the year, but instead representative of the 
year. Weighting of the clusters is necessary to obtain a history proportional to the year using the weights 
shown in Table 3-2. The statistics of each cluster are available as a result of running the training workflow 
in RAVEN. 

Table 3-2. Number of days represented by each day simulated. 

Day Number 
of days 

Day Number 
of days 

1 46 8 37 
2 3 9 45 
3 51 10 4 
4 54 11 9 
5 21 12 8 
6 51 13 9 
7 12 14 15 
  TOT 365 
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Finally, the resulting 100 synthetic histories are shown below for each of the four signals as a cloud of 
samples. 

 

 
Figure 3-5. Synthetic Reduced Histories: Demand (top left), hydro (top right), other renewables (bottom left), wind 

(bottom right). 

 

3.3 Daily market analysis  
A set of UC/ED calculations was conducted with the scope of analyzing the NY-ISO market using the 
EDGAR code. The goal is to determine the optimal UC/ED schedule leading to the least cost of electricity, 
i.e. the different plant necessary to satisfy a given demand profile together with estimated reserve 
requirements. Simulations are first completed on the 2015 year using historic information from the grid, 
then on the 2050 scenario predicted from GCAM simulation. 

3.3.1 Methods description and assumptions 
• Model for NY-ISO 

The first step is to build an EDGAR model of NY-ISO that contains detailed information on each operating 
power unit. This type of detailed information is not directly used by MARKAL or GCAM and needs to be 
retrieved from the ISO modeled. Special care should be taken to verify the consistency between the data 
retrieved, and the information provided by GCAM/MARKAL and VARMA. NY-ISO [29] contains data 
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regarding the generating facilities operating in the NY-ISO region in 2015. During the year, 697 units were 
operating in the region: 408 from renewable sources (biomass, hydroelectric, solar, wind) and 297 non-
renewable sources (nuclear, coal, natural gas, oil, dual fuel) [29]. Table 3-3 shows the number of units and 
installed capacity per fuel type, while Table 3-4 shows the breakdown of natural gas units by technology 
type. The capacities of the different fuel generator types from [29] and shown in Table 3-3 present slight 
differences than those obtained through GCAM and shown in Table 3-1. The GCAM derived installed 
capacities were calculated by assuming the capacity factors shown in Table 3-12, while the one presented 
in [29] are the actual capacities in the region as presented by the system operator. The amount of electricity 
produced by the different fuel sources in 2015 in the NY-ISO region is reported in Table 3-5. 

 

Table 3-3. Generating units in NY-ISO in 2015, extracted from NY-ISO [29]. 

Fuel type Number 
of units 

Total installed 
Capacity (MW) 

Nuclear 6 5,440 
Coal 8 1,469 
Natural gas 54 4,086 
Oil 84 3,091 
Dual fuel 
(gas and oil) 

145 19,283 

Hydroelectric 347 4,267 
Biomass, solar 46 507 
Wind 21 1,461 

 
Table 3-4. Natural gas units operating in NY-ISO in 2015, extracted from NY-ISO [29]. 

Fuel type Number 
of units 

Combined cycle 9 
Combustion turbine 22 
Jet engine 9 
Steam turbine 6 
Internal combustion 8 

 
Table 3-5. Breakdown of NY-ISO electricity production in 2015. 

 Energy 
(106 MWh) 

Demand 134.58 
Nuclear 43.06 
Natural gas 26.40 
Dual fuel 29.28 
Other fossil 0.92 
Hydroelectric 28.62 
Wind 3.99 
Other renewable 2.30 

 

Each generating unit is characterized by a different capacity and operational parameters. The technologies 
can be categorized by their capability to follow rapid fluctuations of the load demands. Gonzalez-Salazar 
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et al [30] collected flexible operation features of different power generation technologies, which are 
reported in Table 3-6. Nuclear, lignite and coal power plants, certain steam turbines with oil/gas as boiler 
fuel are inflexible generation technologies. These power plants are designed for baseload operation, while 
start-up and ramping operations are rare and time-consuming. Flexible generation technologies comprise 
flexible gas turbine combined cycle, flexible coal, biomass, and biogas. These power stations are designed 
to adjust their generation level to cope with load variations and start at short notice. Reservoir hydro, 
combustion engines or aero-derivative gas turbines, a sub-set of simple cycle gas turbines are highly flexible 
technologies. The additional cost of operating these plants in a more flexible way can be very low. 

Table 3-6. Flexibility characteristics of power generation technologies [30]. 

Technology Minimum 
output 

(% full load) 

Ramping rate 
(% full 

load/min) 

Hot start-up 
time (h) 

Hydro reservoir 5 15 0,1 
Simple cycle gas turbine 15 20 0,16 
Geothermal 15 5 1,5 
Gas turbine (combined cycle) 20 8 2 
Concentrated solar power 25 6 2,5 
Steam plants (gas, oil) 30 7 3 
Coal power 30 6 3 
Bioenergy 50 8 3 
Lignite 50 4 6 
Nuclear 50 2 24 

 

• Description of the EDGAR simulation  

The goal of this analysis is to solve the UC/ED problem for one year, for the NY-ISO region. Simulating 
the whole year can be computationally overwhelming, and therefore a simplified approach was adopted. 
As discussed in Section 3.2, the UC/ED problem is solved on 14 nonconsecutive days selected by 
RAVEN/VARMA to be representative of the whole year. As a result, 14 UC/ED independent optimization 
problems are solved. However, in solving each day independently, the initial conditions that are chosen can 
affect the accuracy of the results.  

In each of the 14 simulations, 2 consecutive days are simulated using the same demand and renewable 
production profiles. The first day is used to provide the initial conditions to the second day, which is 
optimized by minimizing the production cost. Once the results of each simulated day are obtained, the 
dispatch profiles and the generating costs are assumed to be the same for the number of days that the 
simulation represents and the power generated and the generating costs are multiplied by the respective 
number of representative days, as shown in Table 3-2. The resulting values representing the different 
sections of the year are then summed to obtain the generated electricity and generating costs for the whole 
year.  

In this analysis, penalties associated with under-production and over-production of electricity are 
considered. A value of 3,500 $/MWh was chosen for both under-production and over-production scenarios. 
Penalties can be seen as a price to be paid to somebody else to absorb the electricity or to compensate for 
the missed demand. In reality, in an energy market there is no penalty associated with overproduction 
scenarios. However, in EDGAR the overproduction penalty serves the role to discard those non-optimal 
solutions and to encourage the system to meet the demand.  

The electricity demand and the production profiles of wind, hydroelectric, and other renewables are treated 
stochastically. In each simulation, a demand profile is sampled through the VARMA algorithm along with 
the production profile of wind, hydro and other renewable sources. Then, the demand, “net” of renewable 
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production is calculated as the difference between the demand and the electricity produced through 
renewables. The net demand is dispatched through non-renewable components of the grid. Through this 
approach, there is no need to model the renewable units (biomass, hydroelectric, solar, wind), as their 
production profiles are sampled through the VARMA algorithm and imported as an input. Currently, the 
hydroelectric power is treated stochastically (the correlations between hydro-power generation and load 
demand are maintained with VARMA), while in a real case hydroelectric units vary their power output to 
respond to changes in demand or in renewable production. In addition, hydro-storage units are currently 
neglected in this analysis, while, in reality, these units play an important role in the grid. To this aim, hydro-
storage is used to store energy when demand level is low, and to produce electricity during demand peaks. 
NY-ISO [28] shows a hydro storage installed capacity of 1.4 GW for 2015. Another important assumption 
to this model is that renewables do not contribute to meet reserve requirements.  

 

• Grid model simplification  

Through this approach, only the non-renewable units need to be modeled in EDGAR. However, modeling 
all 297 non-renewable units would require a high number of generations needed for convergence and be 
computationally expensive.  

To this aim, gas, oil, and dual fuel units, which make up a total of 283 units, were assembled into 40 
representative units. All units of the same fuel type were modeled with the same operational parameters 
while keeping the same total installed power. The number of units for each fuel type from Table 3-3, were 
reduced by a factor 283/40 and rounded to the nearest integers. For example, the installed capacity of natural 
gas units is 4,086 MW and it is produced by 54 plants, for an average of 76 MW/unit. In the simulation, the 
same installed capacity is obtained by 7 units of 583.7 MW. The representative units that were used in the 
simulation are shown in Table 3-7. Because the size of operating base-load units affects the reserve 
requirements, the number and capacity of nuclear and coal units were not modified.  

Table 3-7. Representative units used in EDGAR simulations. 

Fuel type Number 
of units 

Unit capacity 
(MW/unit) 

Total Capacity 
(MW) 

Nuclear 6 906.7 5,440 
Coal 8 183.6 1,469 
Natural gas 7 583.7 4,086 
Oil 11 281.0 3,091 
Dual fuel 
(gas and oil) 

20 964.2 19,283 

 

The normalized ramp rates, minimum and maximum output, and down times that were used for the different 
representative units are shown in Table 3-8. The values of the operational parameters used in the 
simulations, for the representative types of generators are shown in Table 3-9. The unit marginal costs were 
determined based on [2] and regional multipliers from NEMS. The no-load cost (NLC) represents the cost 
of maintaining the units on while producing the minimum output. 
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Table 3-8. Unit operational parameters per fuel type (normalized to the maximum output). 

 Nuclear Coal Gas Oil 
Min output (MW) 100% 50% 50% 50% 
Min down time (h) 8 8 3 3 
Min Up time (h) 8 8 2 2 
Ramp-down limit (% full load/h) 25% 25% 50% 50% 
Ramp shutdown limit (% full load/h) 50% 50% 100% 50% 
Ramp startup limit (% full load/h) 50% 50% 100% 100% 
Ramp-up limit (% full load/h) 50% 22% 50% 100% 
Max sustained ramp (% full load/min) 2.5% 2% 8% 8 % 
Quick Start Capacity 0% 0% 70% 100% 

 
 

Table 3-9. Unit operational parameters per fuel type. 

 Abbreviation Nuclear Coal Gas Oil Dual 
Number of units  6 8 7 11 20 
Marginal Cost ($/MWh) MC 6.8 31.1 31.8 78.4 55.1 
No Load Cost ($/h) NLC 580 1,685 24,942 10,343 16,020 
Startup cold cost ($) SUCC 77,000 6,265 38,405 14,966 25,151 
Startup hot cost ($) SUHC 50,000 4,177 38,405 14,966 25,151 
Shutdown cost ($) SDC 0 0 0 0 0 
Number of hours of a cold start, 
(h) TCOLD 8 6 0 0 0 

Max Output (MW) PMAX 907 184 583.7 281.0 964.2 
Min Output (MW) PMIN 907 92 38 18 66 
Min Down time (h) MINDOWNTIME 8 8 3 3 3 
Min Up time (h) MINUPTIME 8 8 2 2 2 
Ramp-down limit (MW/h) RDL 227 45 292 141 482 
Ramp shutdown limit (MW/h) RSHUTDOWNLIM 227 92 584 141 964 
Ramp startup limit (MW/h) RSTARTUPLIM 227 92 584 281 964 
Ramp-up limit (MW/h) RUL 227 40 282 281 964 
Max sustained ramp (MW/min) MSR 23 4 47 22 77 
Quick Start Capacity (MW) QSC 0 0 378 412 964 

 
3.3.2 Reference daily market analysis 
3.3.2.1 2015 
The electricity produced by each energy source in 2015 is shown in Figure 3-6 as reconstructed from the 
results of the 14 simulations. The reference data coming from NY-ISO [28] does not provide a breakdown 
between coal, dual-fuel, and gas plants, but an overall “fossil fuel” generation. The comparison between 
the electricity produced as evaluated by EDGAR and the reference data is shown in Figure 3-7. The amount 
of electricity produced by nuclear evaluated by EDGAR is 6.1% higher than the one observed in the region. 
The lower value in the “real” amount of electricity produced by is due to scheduled refueling and 
maintenance during 2015, which caused the shutdown of the units. At the moment, the maintenance 
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shutdown is not implemented in EDGAR. The amount of higher production by nuclear is counterbalanced 
by lower production of electricity from fossil fuels (-4.7%). The wind (+1%) and other renewables (+0%) 
production are consistent with the reference data, which confirms the synthetic data provided by VARMA 
are consistent with historic data. 

 
Figure 3-6. Breakdown of electricity generated by source calculated with EDGAR. 

 

 
Figure 3-7. Comparison between EDGAR and reference electricity generated. 

Using the first set of synthetic data, the electricity demand is matched at all times during the days, and the 
reconstructed total cost for the whole year is $4,180 M. The revenue per installed capacity from the nuclear 
reactors is 475.5 M$/GW installed, (57.1 $/MWh) while the revenue from the renewable sources is 2.0 B$ 
(57.4 $/MWh). The demand and production profiles as resulting from the first simulation of the first 
synthetic data are plotted in Figure 3-8, together with the generation cost. The clearing price for this 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

Nuclear Coal Gas Oil Dual	
fuel

Wind Hydro Other	
Renew

Electricity	generated	- 2015	(EDGAR	results)

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

45% 

Nuclear Tot	fossil Wind Hydro Other	Renew

Electricity	generated	- 2015

EDGAR

Reference	data



Daily Market Analysis Capability and Results  
38 April 30, 2019 
 

 

simulation is 78.36 $/MWh, which is equal to the marginal cost of the committed most expensive unit and 
is constant throughout this specific day.  

 

 
Figure 3-8. Demand and dispatch profile (a); total costs (b) (day 1 of 14).  

 

The best cost as function of the generation number for the first simulated day (day 1 of 14) is shown in 
Figure 3-9. The plot shows that the calculation is converged after 26 generations.  

 

 
Figure 3-9. Best Cost as a function of the generation number (day 1 of 14). 

 

• Sensitivity on the number of representative units  

The first day of the first VARMA dataset (day 1 of 14) was also simulated with a different number of units 
to assess the impact of merging the 297 fossil-generator thermal units into 40. For the case presented in the 
previous section (with 40 units representing the fossil-generators), the total cost for the first day is $16.8 
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M. The UC cost is $0.3 M and the generation cost is $16.5 M. For this case, 26 generations are needed for 
convergence, and the total simulation time was 4 hours and 50 minutes on a 20-cores machine. 

As the number of fossil units is reduced to 20, the total cost is $17.3 M. The UC cost is $0.2 M and the 
generation cost is $17.1 M. On the same 20-cores machine, the simulation time is reduced to 2 hours and 
43 minutes, with 20 generations used for convergence.  

The same day was run with 70 fossil units, increasing the number of UC scenarios from 100 to 300, and 
increasing the number of ED samples from 100 to 120. For this case, the total cost is $17.7 M, of which 
$17.4 M is generation cost and $0.3 M is UC cost. On an 80-cores machine, the simulation time was 9 hours 
and 32 minutes, which is equivalent to 38 hours and 8 minutes on a 20-cores machine. The best cost as a 
function of the generation number is shown in Figure 3-10.  

This sensitivity analysis confirms the relatively low impact of the unit merging performed in this analysis 
(and further described in Appendix B) to reduce the computational burden.  

 
Figure 3-10. Best Cost as a function of the generation number (70 fossil units) 

 

• Sensitivity analysis on the synthetic data provided 

The EDGAR simulations were performed for 20 datasets of synthetic data for the 2015 scenario. The total 
cost resulting from the different VARMA datasets are shown in Figure 3-11. The averaged total cost is 
$4,228 M, with a standard deviation of $112.92 M, equal to 2.7% of the mean. The highest cost is obtained 
using the third dataset and is $ 4,293 M, 2.4% higher than the mean. These results show that the analysis 
for a single year can reasonably be performed using only the first set of data, which provides an average 
total cost. Additional sensitivity analysis on the set of synthetic data provided on the 2050 deployment 
scenario could not be performed for this report but would be required to assess the impact of the variations 
in synthetic data on the results obtained. 
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Figure 3-11. Total cost for different VARMA datasets. 

 

3.3.2.2 2050 
An UC/ED calculation was performed for year 2050, using inputs provided through the GCAM calculation 
presented in Figure 3-1. The relative percentage changes for the different energy sources are shown in Table 
3-10. However, GCAM does not track plant capacity but only supplies energy generation. Therefore, the 
per unit change in electricity production were applied to the installed capacities in 2015 to estimate the 
installed capacities in 2050. Consequently, all unit types are assumed to have the same capacity factors in 
2050 as in 2015. However, because of the increase of low capacity factor generators such as renewables 
(see Table 3-12), the overall installed capacity of the NYISO fleet increases by 21.7%, from 41.0 GW to 
49.9 GW. Since GCAM does not provide the electricity generated by dual fuel plants, the increase in dual-
fuel generating capacity was estimated as the average increase between the gas and oil capacity increases.  

 

Table 3-10. GCAM electricity generation increase in the 2015-2050 timeframe. 

Technology 2015-2050 
increase 

2050 Installed 
Capacity MW 

Nuclear -53.0% 2,559  
Coal -9.2% 1,334 
Gas +11.9% 4,561  
Oil +28.8% 3,980 
Dual fuela +20.0% 23,176 
Hydro 0.0% 4,267 
Wind +340.6% 6,436 
Other Renewables +330.5% 2,183 
Total +1.3% 49,905 
a increase calculated as the average between the gas and oil increases 
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Table 3-11 shows the number of representative units used in the EDGAR simulations. The nuclear power 
was divided among two large plants of 907 MW (as the 2015 case) and three small plants of 248 MW. The 
total number of base-load units was limited to 40, as in the 2015 case, and the number was calculated 
according to the same methodology. For each of these sources, the total capacity was divided among the 
number of units. 

 

Table 3-11. GCAM electricity generation increase in the 2015-2050 timeframe. 

Technology # units Unit capacity (MW) 
Nuclear (large) 2 907 
Nuclear (small) 3 248 
Coal 7 184 
Gas 7 649 
Oil 12 331 
Dual fuel 21 1,102 

 

According to the GCAM simulation, the electricity demand increases by 1.34% in the timeframe 2015-
2050, and becomes 0.49 EJ (136,372 GWh). In year 2050, a 340.6% increase in wind generation and a 
330.5% increase in other renewable generation (solar, biomass) are expected. The hydroelectric generation 
is constant over the period 2015-2050. To simulate the 2050 scenarios, the demand, wind, hydro, and other 
renewables profiles were increased using multiplicative factors representing the increases shown in Table 
3-10. Out of consistency, the minimum power and ramp rates were re-calculated according to the same 
methodology used to simulate the year 2015.  

Various scenarios were considered for the 2050 daily market analysis and are reported in Appendix C. 
Directly using the installed capacity extracted from GCAM, the 2050 results display significant over-
capacity penalties, suggesting that the grid cannot always meet the demand at some hours due to large 
production from wind, hydro-power, and base-load nuclear. Renewable or nuclear curtailments prevent 
over-production penalties. Including hydro-storage or modeling hydro-generation and biomass as flexible 
generation units (instead of fixed generation) would provide different insight and should be considered in 
the future.  

As a mean to avoid overproduction penalties, the 2050 case was simulated allowing renewable energy 
curtailment (RE-C). Curtailment is the reduction of output of a renewable resource below what it could 
have otherwise produced. The lower bounds of renewable production that were chosen are 80% for 
hydroelectric, 0 % for wind, and 0% for other renewables. In certain circumstances, curtailment allows a 
cost reduction, especially in those cases where certain units would be forced to turn off (with a subsequent 
shutdown cost) when renewable production is particularly high. In some cases, when the demand is low 
and the renewable production is high, system constraints might not allow certain units to shut down, with 
resulting over-production of electricity and subsequent penalties. In these cases, a reduction of the 
renewable power contribution might lower the penalty for over-production and the ensuing total cost.  

The results show that over the whole year, wind production is curtailed by 14.3% (0.57·106 MWh), other 
renewables are curtailed by 21.9% (0.50·106 MWh), and hydroelectric is curtailed by 5.8% (1.66·106 
MWh). The load demand is met at all time and the total cost for the year is $ 4,469 M, 6.9% higher than 
the 2015 total cost. The revenue per installed capacity from nuclear sources is 490.9 M$/GW (56.1 $/MWh), 
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and the revenue from RE sources is 2.8 B$ (55.9 $/MWh), 3% and 40 % higher than those of 2015, 
respectively. 

 

 
Figure 3-12. Electricity production by wind sources, without and with curtailment (day 11 of 14). 

 

3.4 Summary of results 
The analysis summarized in this section illustrates the full method developed for daily market grid analysis 
where a long-term scenario produced by GCAM for NY-ISO was used to drive simulations with the daily 
market analysis code EDGAR. The main outcome of this exercise is the expertise gained with completing 
this process through the following steps: 

- Grid plant data need to be extracted from the grid modeled. Here we should in particular consider 
the number and capacity of each unit as the total installed capacity should be consistent between 
daily and regional market codes. Additional information needed by the daily market codes are the 
unit operational costs and capabilities. Simplification of the grid model (with reduced number of 
units) may be considered to speed-up the UC/ED computation without affecting the conclusion of 
the analysis. 

- Cost data (Marginal Cost) and policy scenarios (e.g. carbon tax, …) should be consistent between 
daily and regional market codes for different capacity production technologies. This is 
fundamentally important since daily market codes prioritize production from lowest marginal cost 
technology, while regional market codes tend to prioritize installation of lowest capital cost 
technologies. 

- Total load demand and renewable generation are extracted from the grid website and hourly data 
was generated using the VARMA module in RAVEN to condensate the full year statistical 
information within 14 representative days. Many sets of synthetic data were generated by VARMA 
and analyzed using EDGAR, showing relatively low variations in the total electricity generation 
costs (2.7% standard deviation and results spread over 5% of the mean value).  

This approach enables to confirm the feasibility of the deployment scenario provided by capacity expansion 
code. It allows confirming the installed capacity is sufficient to meet the demand, that the VRE generation 
won’t lead to exceed generation, that the VRE backup capacity requirements are sufficient, and that reserve 
requirements are met at every time of the year. The impact from the renewable generation curtailment 
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required on the reduction of the capacity factor (as shown in Table 3-12) is especially important and could 
be used back in the capacity expansion code.  

This exercise highlights specific assumptions that are still used by different market analysis codes and 
helped quantify the impact of some of these. For instance, the unit merging approach developed provides a 
reasonable simplification to be used while additional effort focuses on reducing the computational burden 
from EDGAR simulations. However, the models for hydro power needs to be improved in EDGAR in order 
to address assumptions used to analyze a region like New York State. GCAM data is post-processed with 
constant capacity factors, but it could also be possible to use capacity factors from daily market simulations. 
The clustering approach employed with RAVEN’s VARMA algorithm is still strongly user dependent and 
could be either data-informed or further automated in order to facilitate future analysis and ensure 
reproducibility. 

 

Table 3-12. Generator capacity factorsa by fuel type. 

Technology GCAM EDGAR 2015 EDGAR 2050 
RE-C  

Nuclear 0.90 1.00 1.00 
Coal 0.55 0.79 0.91 
Gas 0.55 0.15 0.14 
Oil 0.1 0.02 0.01 
Dual fuel (gas-oil) - 0.18 0.22 
Pumped storage - 0.00 0.00 
Hydro 0.40 0.76 b 0.72 c 
Wind 0.37 0.31 b 0.27 c 

Other 0.55(biomass) 
0.2(solar) 0.52 b 0.40 c 

a The capacity factors are defined as the amount of electricity divided by the maximum amount that can be produced during the year. The 
maximum amount that can be produced during the year (in MWh) is the installed capacity (in MW) times the number of hours in a year 
(8,760). 
b calculated in respect to the installed capacity shown in Table 3-3 
c calculated in respect to the installed capacity shown in Table 3-10 
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4. SUMMARY  
The System Analysis and Integration Campaign has been acquiring the capability and expertise to model 
energy market economics. The objective of this report is to describe the tools acquired for market analysis 
and to illustrate their capabilities and complementarities with an example of analysis. 

Capacity expansion problems are solved with the GCAM and MARKAL models, simulating the energy 
markets in different U.S. and world regions over more than 100 years to provide a scenario-based long-
term perspective. However, these simulations rely on simplified assumptions to account for the daily 
variations in electricity prices and unit generation, those need to be verified using smaller time-frames 
market analysis code systems. The EDGAR (Economic Dispatch Genetic AlgoRithms) code was developed 
under the SA&I to solve the combined Unit Commitment and Economic Dispatch problems to find the 
optimal schedule of a fleet of generating units to meet the forecasted grid demand over the next day in 
deregulated markets with an hourly time resolution. It can be used to demonstrate the feasibility of 
technology deployment scenarios proposed by capacity expansion codes. The capabilities of EDGAR were 
significantly expanded in FY 2018 & 2019, by improving its code structure and computation performance, 
adding physics modeling for xenon reactivity effect in nuclear reactors, optimizing the renewable 
curtailment, and enabling deterministic assessment of the reserve requirement. For these analyses, EDGAR 
relies on sets of load demand and renewable generation data with a one-hour time-step that are generated 
out of historic data using the VARMA (Vector Auto-Regressive Moving Average) model in RAVEN (Risk 
Analysis Virtual ENvironment), to condensate the full-year of data into a few representative days for 
EDGAR to simulate. To deliver this, segment clustering was implemented in the VARMA algorithm in FY 
2019, together with two variance handling methods (segmentation and distribution preservation) conceived 
to better capture the distribution values from the training data.  

This full suite of codes was used to model the New York ISO region in order to demonstrate the capabilities 
acquired and build expertise within the Campaign in daily market analysis. This exercise was especially 
useful to help better understand what are the specificities of the different market modeling codes acquired 
and developed, what are the assumptions these codes rely on, and where are the remaining gaps in our tools 
those need to be addressed. NY-ISO was selected because it is a mostly deregulated market with significant 
fraction of nuclear and wind generations foreseen in 2050. Long-term scenarios from capacity expansion 
codes can be used to drive simulations with daily market analysis codes following a few preliminary steps. 
First, consistent grid plant data and cost data must be gathered. Second, historic load demand and renewable 
generation data with fine time resolution should be obtained and processed through VARMA to condensate 
the full year statistical information into a few representative days. Daily market analyses are then performed 
with EDGAR to schedule a representative fleet of units (40 modeled for NY-ISO) on the reference time-
point (2015) to demonstrate convergence of the results obtained, and their sensitivity to different sets of 
synthetic data generated with VARMA. Finally, similar analysis can be performed on the long-term (2050) 
scenario produced by GCAM to assess the feasibility of the deployment scenario provided. This procedure 
allows confirming the installed capacity is sufficient to meet the demand, which reserve requirements are 
met at every time of the year, and that the VRE generation won’t lead to exceeding generation if their 
curtailment is allowed. The curtailment rate can then be provided back to the capacity expansion code in 
order to improve its model.  

Consequently, the daily market analysis codes acquired by the SA&I Campaign enable analyses that are 
complementary to the global and regional energy market analyses. In particular, some of these codes are 
developed within the campaign as they provide unique capabilities for accurately modeling nuclear units 
and accounting for uncertainties in load and renewable generation data tools. Current applications discussed 
in this report are limited to testing and developing analysis experience while additional work is underway 
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to improve accuracy, performance, and to keep extending the type of analyses enabled with daily market 
modeling codes. Future efforts will also focus on applying this approach to additional U.S. regions. 
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Appendix A: Fourier Frequencies from VARMA analysis 
These tables are provided in the interest of repeatability as well as to provide guidance for future analyses. 

Table A-1. Fourier frequencies, load. 

Fourier Period (seconds) Fourier Period (readable) FFT Amplitude (W) 
Infinite infinite 1.35e8 
86400 1 day -8.26e6 

1576800 6 months 5.26e6 
31536000 1 year -3.25e6 

43200 12 hours -2.66e6 
1752000 20.27 days 1.87e6 
955636 11.06 days -1.81e6 

3153600 36.5 days 1.72e6 
1087448 12.6 days -1.47e6 
1314000 15.2 days 1.41e6 

Table A-2. Fourier frequencies, hydro. 

Fourier Period (seconds) Fourier Period (readable) FFT Amplitude (W) 
Infinite infinite 2.86e7 
86400 1 day -1.92e6 

31536000 1 year 6.04e5 
43200 12 hours -5.93e5 

7884000 3 months -3.48e5 
15768000 12 months -2.37e5 
10512000 4 months -2.20e5 
2866909 33 days -2.19e5 
769171 9 days 1.84e5 

3504000 40 days -1.84e5 
Table A-3. Fourier frequencies, wind. 

Fourier Period (seconds) Fourier Period (readable) FFT Amplitude (W) 
infinite infinite 3.99e6 

31536000 1 year 7.53e5 
1855059 21.5 days -3.30e5 
485169 5.6 days 2.76e5 
342783 4 days -2.74e5 
618353 7.15 days -2.20e5 
685565 7.93 days -2.20e5 

2252571 26 days 2.08e5 
1576800 18.25 days 1.98e5 
700800 8.1 days 1.94e5 

Table A-4. Fourier frequencies, other renewables. 

Fourier Period (seconds) Fourier Period (readable) FFT Amplitude (W) 
infinite infinite 2.29e6 
86400 1 day -3.15e4 

31536000 1 year -2.59e4 
7884000 3 months 1.94e4 

43200 12 hours 1.87e4 
2628000 1 month 1.80e4 
3504000 40.5 days 1.56e4 
630720 7.3 days -1.40e4 

1314000 15.2 days 1.34e4 
1505143 52 days 1.16e4 
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Appendix B: Method Proposed for Merging Units in UC/ED 
Simulations 
The sensitivity analysis performed in Section 3.3.2.1 revealed the importance of properly merging small 
units into larger one, in order to preserve the total generation cost together with the flexibility of the fleet. 

In UC/ED simulations, the generation cost is calculated as: 

𝐶𝑃𝐺 = 𝑁𝐿𝐶,	if  𝑃 < 𝑃L/I 	⟺ 𝑃 = 0	 (27) 

𝐶𝑃𝐺 = 𝑁𝐿𝐶 + M𝐶 ∙ (𝑃 − 𝑃L/I), if  𝑃 ≥ 𝑃L/I (28) 

where 𝑁𝐿𝐶 is the no-load cost, 𝑀𝐶 is the marginal cost, 𝑃 is the power level, and 𝑃L/I is the minimum 
power of the unit.  

When 𝑁 units are assembled in a single unit, 𝑃L/I is assumed to be the minimum power of the single unit 
to maintain the flexibility of the fleet. Consequently, the no-load cost of 𝑁 assembled units (𝑁𝐿𝐶9) must 
be calculated as: 

𝑁𝐿𝐶9 = 𝑁	 ∙ 𝑁𝐿𝐶 − 𝑀𝐶 ∙ 𝑁 − 1 ∙ 𝑃L/I  (29) 
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Appendix C: Sensitivity daily market analyses on 2050 scenario 
Various sensitivity analyses were performed with EDGAR on the 2050 scenario to find the most realistic 
grid operation that avoids penalties. The final scenario described in Section 3.3.2.2 considers curtailment 
of renewable generation but no nuclear load following. 

• 2050 scenario without load following and renewable curtailment 

Year 2050 was simulated without allowing load following of nuclear plants and curtailment of renewable 
generation. The total cost for this scenario is $5,907 M, 41.2% higher than the 2015 total cost. The revenue 
per unit of capacity from the nuclear units is 538.9 M$/GW (61.5 $/MWh), while the revenue from 
renewables is 3.5 B$ (62.1 $/MWh). The high renewable penetration causes an overproduction above the 
energy demand at certain times of the day. Over the whole year, 0.3% of electricity is overproduced. 
However, because of the high unit-cost of missed demand, which is assumed here to be 3,500 $/MWh, the 
overproduction scenarios result in a yearly cost of $1,430 M, or 24.2% of the total cost. One of the main 
reasons for the high value of over-produced electricity lies on the assumptions made on the hydroelectric 
generators and storage. As hydroelectric is treated stochastically, there is no control on its production. In 
fact, hydroelectric is a highly flexible technology that allows to follow the demand and store energy when 
the demand exceeds the production, thus avoiding penalties.  

 

• Impact of nuclear load following 

The load following capability allows nuclear units to follow the demand and reduce the power output to 
find more optimal operation scenarios. The minimum power allowed for the nuclear units is 20% of the 
nominal power. For simplicity purposes, all nuclear units are supposed to be in their beginning of cycle and 
are not constrained by their xenon effect. This assumption will need to be revised in the future, but requires 
modification of the economic dispatch logic in order to allow it to anticipate on future time-steps before 
making a power change (as discussed in Section 2.3.1). Under these assumptions, the total yearly cost is 
$5,397 M, 8.5% lower than the nominal case. The overproduced electricity decreases from 0.3% of the 
nominal case to 0.1%, which translates to a penalty cost that is to 9.0% of the total cost. Over the whole 
year, nuclear production is reduced by 12% (2.69·106 MWh) as compared to the case without load 
following. The revenue per GW installed from nuclear reactors is 442.2 M$/GW (60.7 $/MWh) and the 
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revenue from renewable sources is 3.5 B$ (62.9 $/MWh). With respect to the RE curtailment case, the 
revenue from RE sources is higher as more renewable energy is transmitted to the grid.  

 

 
Figure C-1. Nuclear power production (total of all 6 nuclear units considered) for day 1 of 14, load following case. 

 

• Impact of curtailment and nuclear load following 

An additional case was run where the nuclear units were operated in flexible mode (load following) and the 
renewable power contribution could be curtailed. For this case, the total yearly cost is $4,648 M, 4% higher 
than the curtailment-only case (described in Section 3.3.2.2), and 13.9% lower than the load following-only 
case. The revenue from nuclear sources is 478.1 M$/GW (56.1 $/MWh), and the revenue from RE is 2.9 
B$ (56.3 $/MWh). Over the whole year, nuclear is curtailed by 5.3% (1.19·106 MWh), wind is curtailed by 
13.0% (0.52·106 MWh), other renewables are curtailed by 20.0% (0.46·106 MWh), and hydroelectric is 
curtailed by 3.8% (1.09·106 MWh). This case is equivalent to the curtailment-only case, with a constraint 
that is relieved, i.e. the power of the nuclear units is not fixed at maximum power at all times. Therefore, it 
might sound surprising that the same optimization problem, with some constraints relieved, gives a less 
optimal solution. However, when load following is modeled, an additional constraint is added to the 
problem. When a nuclear unit reduced its power output, nominal operating conditions at rate power cannot 
be restored right after. The unit is constrained to be operated at reduced power output for two consecutive 
hours. The energy dispatch algorithm optimizes the dispatch in an hour-by-hour case, finding the 
configuration for the following hour that minimizes the total cost. Therefore, it may happen that the optimal 
solution for a given hour is driven by having the nuclear units at a low power level. However, in this case, 
the algorithm does not consider that for the following hour, more expensive units (e.g. gas, oil) need to be 
activated if the net demand increases. This case can be seen during day 14 at hour 20, when the second 
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nuclear unit is decreasing in power (Figure C-2). At the following hour (hour 21), the nuclear unit is forced 
to “stay down”, and a gas unit (unit #3) increases power in to satisfy the demand.  

 

 
Figure C-2.  Comparison between nuclear (left) and gas (right) production, with load following and curtailment.  

 

This non-optimal scenario can be discarded if the energy dispatch is optimized on a time scale of several 
hours and not on an hour-by-hour base. This type of constraint typical to nuclear and to storage units 
illustrates the need for the economic dispatch to be able to anticipate on future requirements, as already 
discussed in Section 2.3.1. 

 

• Sensitivity analysis on the nuclear capacity 

A sensitivity analysis was conducted on the installed capacity of nuclear, considering load following and 
curtailment. With respect to the case described in the previous section, a large nuclear unit is added to the 
fleet. The total nuclear capacity is 3,465 MW, i.e., 35.5% higher than the reference case (2,558 MW 
installed). This scenario leads to a total cost of $4,264 M, 8.3% lower than the case without the additional 
nuclear unit. Over the whole year, nuclear is curtailed by 5.0%, (1.12·106 MWh), wind is curtailed by 16.9% 
(0.67·106 MWh), other renewables are curtailed by 23.4% (0.54·106 MWh), and hydroelectric is curtailed 
by 5.3% (1.52·106 MWh). As nuclear capacity is added, the total cost decreases, but more renewable 
production is curtailed in order to avoid over-production scenarios. The revenue from nuclear reactors is 
453.4 M$/GW (55.2 $/MWh) and the revenue from renewable sources is 2.8 B$ (55.2 $/MWh). Compared 
to the previous case, the revenue from nuclear is 7.6% lower. 

 

• Summary of 2050 results 

The results of the sensitivity analyses are summarized in Table C-1. The highest cost ($5,907 M) is for the 
scenario without both renewable curtailment and load following, as it is characterized by a consistent 
overproduction penalty. As the cost of overproduced electricity does not have a realistic meaning the cost 
of this scenario is not realistic.  

As RE-C is introduced, the overproduction penalty decreases to 0$ and the total cost decreases to 
$4,469 M. The total cost for the load following case ($ 5,397 M) is 20.7% higher than that of RE-C. The 
higher cost is due to the cost of electricity overproduced when renewables production is high.  
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As both RE-C and LF are used, the cost is slightly higher than the case with RE-C only ($4,648 M compared 
to $4,469 M). As previously explained, the reason for this lies in the nuclear reactor constraint to not 
increase power for 2 hours after a power decrease.  

As additional nuclear capacity is installed, the cost decreases from $ 4,648 to $4,264 M, considering both 
RE-C and LF.  

The revenues from nuclear and RE do not change drastically across the scenarios. The higher revenues for 
the case without RE-C and LF are mainly due to the higher amounts of electricity produced and do not 
account for the energy overproduced. 

 

Table C-1. Summary of sensitivity results. 

Scenario Total cost 
(M$) 

Nuclear revenue 
(M$/GW) 

RE revenue 
(B$) 

RE curtailment (RE-C) 4,469 490.9 2.8 
Nuclear load following (LF), no RE-C 5,397 442.2 3.5 
No RE-C, no LF 5,907 538.9 3.5 
RE-C and LF 4,648 478.1 2.9 
Additional nuclear, RE-C and LF 4,264 453.4 2.8 

  
 


